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1 Difference Equations

1.1 pth-order Difference Equations

A pth-order difference equation has the following form:

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + wt (1.1.1)

Expressed in matrices:
ξt = Fξt−1 + vt (1.1.2)

or



yt
yt−1

yt−2
...

yt−p+1



=




φ1 φ2 φ3 . . . φp−1 φp

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0







yt−1

yt−2

yt−3
...

yt−p



+




wt

0
0
...
0




.

Equation (1.1.2) can be rewritten as

ξt = F t+1ξ−1 + F tv0 + F t−1v1 + F t−2v2 + · · ·+ Fvt−1 + vt . (1.1.3)

Equation (1.1.3) can be generalized to

ξt+j = F j+1ξt−1+F jvt+F j−1vt+1+F j−2vt+2+ · · ·+Fvt+j−1+vt+j . (1.1.4)

where t is the starting point for a given vector of past values ξt−1 and j
the number of future periods starting in period t. It follows from equation
(1.1.4) that

yt+j =f
(j+1)
11 yt−1 + f

(j+1)
12 yt−2 + · · ·+ f

(j+1)
1p yt−p

+ f
(j)
11 wt + f

(j−1)
11 wt+1 + f

(j−2)
11 wt+2 + · · ·+ f

(1)
11 wt+j−1 + wt+j

(1.1.5)

which implies a marginal effect of a change in wt on yt+j of

∂yt+j

∂wt
= f

(j)
11 (1.1.6)

with f
(j)
11 denoting the (1, 1) element of F j .

1.2 pth-order Difference Equations with Distinct Eigenval-

ues

The eigenvalues of matrix F are the values of λ for which

|F − λIp| = 0 (1.2.1)

which implies that the eigenvalues are the values that satisfy

λp − φ1λ
p−1 − φ2λ

p−2 − · · · − φp−1λ− φp = 0 . (1.2.2)
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If the (p× p) matrix F has p distinct eigenvalues, this matrix (respectively
matrix F j) can be expressed as

F = TΛT−1

⇔ F j = TΛ
jT−1 (1.2.3)

where T is a (p× p) matrix with the eigenvectors of matrix F as columns
and Λ is a (p× p) matrix with the eigenvalues λ1, λ2, . . . , λp of F along its
principal diagonal and zeros elsewhere. As the eigenvalues are assumed to
be distinct, the columns of T are linearly independent and thus T is invert-
ible (if the eigenvalues of F are not distinct, the eigenvectors may or may
not be linearly independent).

It follows that the marginal effect defined by equation (1.1.6) is a weighted
average of the p distinct eigenvalues raised to the jth power:

∂yt+j

∂wt
= f

(j)
11 = c1λ

j
1 + c2λ

j
2 + · · ·+ cpλ

j
p (1.2.4)

with
ci =

[
t1it

i1
]

(1.2.5)

where t1i is the ith element in the first row of T and ti1 is the ith element in
the first column of T−1. It can be shown that

ci =
λp−1
i

p∏

k=1,
k 6=i

(λi − λk)

. (1.2.6)

Example: A Second-Order Difference Equation with Distinct Eigenvalues

For p = 2, it follows from equation (1.2.2) that

λ2 − φ1λ− φ2 = 0 . (1.2.7)

Solving for λ results in two solutions:

λ1 =
φ1 +

√
φ2
1 + 4φ2

2
, (1.2.8)

λ2 =
φ1 −

√
φ2
1 + 4φ2

2
. (1.2.9)

The eigenvalues λ1, λ2 are complex whenever

φ2
1 + 4φ2 < 0 , (1.2.10)

that is λ1, λ2 can be expressed as

λ1 = a+ bi , (1.2.11)

λ2 = a− bi (1.2.12)
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with

a =
φ1

2
, (1.2.13)

b =

√
−φ2

1 − 4φ2

2
. (1.2.14)

Considering that

cos (θ) =
a

R
, (1.2.15)

sin (θ) =
b

R
(1.2.16)

equations (1.2.11) and (1.2.12) can be expressed as

λ1 = R [cos (θ) + i sin (θ)] = R
[
eiθ
]

, (1.2.17)

λ2 = R [cos (θ)− i sin (θ)] = R
[
e−iθ

]
(1.2.18)

with R =
√
a2 + b2.

2 Autoregressive Moving Average Models

2.1 Basic Concepts

We define a (vector) stochastic process {zi} (i = 1, 2, . . . ) with

zi =




xi1
xi2
...
xin




where xik (k = 1, . . . , n) represent scalar stochastic processes. {zi} is strictly
stationary if the joint distribution of (zi, zi1 , zi2, . . . , zir) depends only on
i1 − i, i2 − i, . . . , ir − i. A stochastic process is weakly stationary if

1. E(zi) does not depend on i and

2. Cov(zi, zi−j) exists, is finite and depends only on j but not on i.

The second condition can be formalized as

Cov(zi, zi−j) ≡ Γij
!
= Γj ∀ i (2.1.1)
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or expressed in matrices

Γij =




Cov(xi1, x(i−j)1) Cov(xi1, x(i−j)2) . . . Cov(xi1, x(i−j)n)

Cov(xi2, x(i−j)1) Cov(xi2, x(i−j)2) . . .
...

...
...

. . .
...

Cov(xin, x(i−j)1) . . . . . . Cov(xin, x(i−j)n)




!
=




γ
(11)
j γ

(12)
j . . . γ

(1n)
j

γ
(21)
j γ

(22)
j . . .

...
...

...
. . .

...

γ
(n1)
j . . . . . . γ

(nn)
j




where γ
(kl)
j represents the correlation between the random variables xik, k ∈

{1, 2, ..., n} and x(i−j)l, l ∈ {1, 2, ..., n} resulting from (weakly) stationary
stochastic processes. We might for example think of observing a time se-
ries of GDP as xi1 and inflation as xi2 which are both modelled by stochastic

processes. In this case, γ
(12)
2 is the correlation between GDP today and infla-

tion two periods ago. Each variable in each period is considered a random
variable resulting from a stochastic process and the matrix Γj contains all
pairwise correlations between those variables in period i and period i− j.

For weakly stationary processes, the following condition holds:

Γij = Γ(i+j)j (2.1.2)

with

Γ(i+j)j =


Cov(x(i+j)1, xi1) . . . Cov(x(i+j)1, xil) . . . Cov(x(i+j)1, xin)
... Cov(x(i+j)2, xi2)

...
...

...

Cov(x(i+j)k, xi1)
...

...
...

...
...

...
...

...
...

Cov(x(i+j)n, xi1) . . . . . . . . . Cov(x(i+j)n, xin)




,

which implies that
Γj = Γ

′

−j . (2.1.3)

A white noise process is defined as a covariance stationary process {zi}
with zero mean and no serial correlation:

E (zi) = 0 , (2.1.4)

Cov(zi, zi−j) = 0 for j 6= 0 (2.1.5)

A stationary process is called ergodic if

lim
n→∞

|E [f (zi, . . . , zi+k) g (zi+n, . . . , zi+n+l)] |
= |E [f (zi, . . . , zi+k)] ||E [g (zi+n, . . . , zi+n+l)] .

(2.1.6)
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The ergodic theorem states that for a stationary and ergodic process zi with
E (zi) = µ,

z̄n ≡ 1

n

n∑

i=1

zi
a.s.→ µ . (2.1.7)

Moreover, for any function f (·), {f (zi)} is ergodic and stationary whenever
{zi} is.

Figure 1: An example of a nonstationary process: Different realisations of a random
walk.

2.2 Moving Average (MA) Processes

2.2.1 MA(1) Process

A first-order MA process (MA(1) process) is defined by

Yt = µ+ ǫt + θǫt−1 (2.2.1)

where {ǫt} represents a white noise process. The expected value of the pro-
cess is constant for each period:

E [Yt] = µ (2.2.2)

The same is true for the variance:

γ0 = E
[
(Yt − µ)2

]

= E
[
(ǫt + θǫt−1)

2]

=
(
1 + θ2

)
σ2 (2.2.3)

The first autocovariance is given by

γ1 = E [(Yt − µ) (Yt−1 − µ)]

= E [(ǫt + θǫt−1) (ǫt−1 + θǫt−2)]

= θσ2 (2.2.4)

All higher autocovariances γj with j > 1 are zero. The absolute value of the
sum of the autocovariances is a finite number:

∞∑

j=0

|γj| =
(
1 + θ2

)
σ2 + |θσ2| <∞ (2.2.5)
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Thus, if {ǫt} is Gaussian white noise, the MA(1) is ergodic for all moments.
We can express the MA(1) process in matrices as well:




y1
y2
y3
...
yT



=




µ
µ
µ
...
µ



+




θ 1 0 0 . . . 0 0
0 θ 1 0 . . . 0 0
0 0 θ 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . θ 1







ǫ0
ǫ1
ǫ2
...
ǫT




⇔ y = µ+Bǫ (2.2.6)

where y,µ are T×1 column vectors, B a T×(T + 1) matrix and ǫ a (T + 1)×
1 column vector. The variance-covariance matrix of y is given by

Σy ≡ Var (y) = E
[
(Bǫ) (Bǫ)′

]

= E [Bǫǫ′B′]

= BIB′

= BB′ (2.2.7)

as E [ǫǫ′] = Var (ǫ) = I under the assumption that Var (ǫt) = 1 ∀ t ∈
{0, 1, 2, . . . , T}. Thus, the T × T variance-covariance matrix of y, Σy, takes
the following form:

Σy =




1 + θ2 θ 0 0 . . . 0 0
θ 1 + θ2 θ 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . θ 1 + θ2




with the variances of yt, 1 + θ2, on the main diagonal.

2.2.2 MA(q) Process

Let’s now take a look at a qth-order moving average process:

Yt = µ+ ǫt + θ1ǫt−1 + θ2ǫt−2 + · · ·+ θqǫt−q (2.2.8)

As in the MA(1) process, its expected value is given by µ:

E [Yt] = µ (2.2.9)

The MA(q) process’ variance is

γ0 = Var [µ+ ǫt + θ1ǫt−1 + θ2ǫt−2 + · · ·+ θqǫt−q]

= σ2 + θ21σ
2 + θ22σ

2 + · · ·+ θ2qσ
2

=
(
1 + θ21 + θ22 + · · ·+ θ2q

)
σ2 (2.2.10)

as the white noise random variables are assumed to be independent and the
variance of a sum of independent variables equals the sum of these vari-
ables’ variances.
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The covariance of a MA(q) process is zero for j > q as Yt and Yt−j have no
common random variables. For j ≤ q, there are common random variables:

ǫt + θ1ǫt−1 + · · ·+ θjǫt−j + · · ·+ θqǫt−q

ǫt−j + · · ·+ θq−jǫt−q + · · ·+ θqǫt−j−q

It follows that the autocovariance is given by

γj = E
[
(ǫt + θ1ǫt−1 + · · ·+ θjǫt−j + · · ·+ θqǫt−q)

(ǫt−j + · · ·+ θq−jǫt−q + · · ·+ θqǫt−j−q)
]

= (θj + θj+1θ1 + θj+2θ2 + · · ·+ θqθq−j) σ
2 (2.2.11)

which implies that a MA(q) process is stationary and ergodic (if ǫt is Gaus-
sian).

2.2.3 MA(∞) Process

A MA(∞) process is defined as

Yt = µ+ ψ0ǫt + ψ1ǫt−1 + ψ2ǫt−2 + . . .

= µ+

∞∑

k=0

ψkǫt−k . (2.2.12)

For stationarity and ergodicity, we have to assume that

∞∑

k=0

|ψk| <∞ (2.2.13)

which also implies that
∞∑

k=0

ψ2
k <∞ . (2.2.14)

Then, the expected values equals µ as E [ǫt] = 0 ∀ t:

E [Yt] = µ (2.2.15)

Its variance and covariances are given by:

γ0 = Var

(
µ+

∞∑

k=0

ψkǫt−k

)

=

( ∞∑

k=0

ψ2
k

)
σ2 (2.2.16)

γj = Cov

(
µ+

∞∑

k=0

ψkǫt−k, µ+

∞∑

k=0

ψkǫt−j−k

)

=

( ∞∑

k=0

ψj+kψk

)
σ2 (2.2.17)
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Coefficients summable in absolute values imply absolutely summable auto-
covariances: ∞∑

j=0

|γj| <∞ (2.2.18)

If the ǫ’s are Gaussian, a MA(∞) process is ergodic.

2.3 Autoregressive (AR) Processes

2.3.1 AR(1) Process

A first-order autoregressive process (AR(1) process) is defined as

Yt = c + φYt−1 + ǫt . (2.3.1)

{ǫt} is a white noise process with E [ǫt] = 0,Var (ǫt) = σ2 ∀ t and Cov (ǫt, ǫτ ) =
0 ∀ t 6= τ . The AR(1) process can be expressed as an MA(∞) process

Yt = (c+ ǫt) + φ (c+ ǫt−1) + φ2 (c+ ǫt−2) + . . .

=
c

1− φ
+ ǫt + φǫt−1 + φ2ǫt−2 + . . . (2.3.2)

with µ = c/ (1− φ) and ψj = φj , under the assumption that |φ| < 1. Thus,
substituting ψj = φj into (2.2.15), (2.2.16) and (2.2.17) yields:

E [Yt] =
c

1− φ
(2.3.3)

γ0 =
(
1 +

(
φ1
)2

+
(
φ2
)2

+
(
φ3
)2

+ . . .
)
σ2

=
σ2

1− φ2
(2.3.4)

γj =
(
φj + φj+2 + φj+4 + . . .

)
σ2

= φj
(
1 + φ2 + φ4 + . . .

)
σ2

=
σ2

1− φ2
φj
[
= γ0φ

j
]

(2.3.5)

2.3.2 AR(2) Process

Let’s now take a look at an AR(2) process:

Yt = c+ φ1Yt−1 + φ2Yt−2 + ǫt . (2.3.6)

We rewrite the process using the lag operator, L:

(
1− φ1L− φ2L

2
)
Yt = c + ǫt (2.3.7)

Substituting the lag operator with a variable z and setting the resulting
equation to zero yields

(
1− φ1z − φ2z

2
)
= 0 . (2.3.8)
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Figure 2: AR(1) processes with different parameters: The upper processes are sta-
tionary AR(1) processes, the lower ones non-stationary random-walks with and
without drift.

Solving (2.3.8) for z is the same as finding the eigenvalues of the F -matrix
in (1.2.2) with z1 = 1

λ1

, . . . , zp = 1
λp

, that is the zj’s are the roots of the lag

polynomial and the inverse of the eigenvalues λj . As the process is stable
for |λj| < 1, the equivalent condition for stationarity is that |zj| > 1. If
the eigenvalues are less than one in absolute value, the lag polynomial is
invertible:

ψ (L) ≡
(
1− φ1L− φ2L

2
)−1

= (1− λ1L)
−1 (1− λ2L)

−1

=
(
1 + λ1L + λ21L

2 + . . .
) (

1 + λ2L + λ22L
2 + . . .

)

= 1 + ψ1L+ ψ2L
2 + . . . (2.3.9)

In other words: We can write the inverse of a lag polynomial of a station-
ary AR(2) process, ψ (L), as a product of two infinite sums. The ψj ’s can be
obtained by expanding (2.3.9) or just using equation (1.2.4) which was de-
rived from a pth-order difference equation by taking the 11-element of the
F-matrix raised to the jth power.

Thus, given our original AR(2) process is stationary, we can rewrite it as

Yt = µ+
∞∑

j=0

ψjǫt−j (2.3.10)

which is the MA(∞) representation of the AR(2) process with µ = c/ (1− φ1 − φ2).
Substituting c = µ (1− φ1 − φ2) into (2.3.6) yields

Yt − µ = φ1 (Yt−1 − µ) + φ1 (Yt−2 − µ) + ǫt . (2.3.11)
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We can write the autocovariance γj by multiplying both sides with Yt−j − µ
and apply the expectation operator

E [(Yt − µ) (Yt−j − µ)] = φ1E [(Yt−1 − µ) (Yt−j − µ)]

+ φ2E [(Yt−2 − µ) (Yt−j − µ)]

+ E [ǫt (Yt−j − µ)]

(2.3.12)

which can be expressed for j > 0 in terms of covariances and correlations as

γj = φ1γj−1 + φ2γj−2

⇔ ρj = φ1ρj−1 + φ2ρj−2 . (2.3.13)

Using the fact that ρ0 = 1 and ρ−j = ρj , it is straightforward to derive for-
mulas for the autocovariances.

2.3.3 AR(p) Process

The AR(p) process is given by

Yt = c+

p∑

j=1

φjYt−j + ǫt

= c+
n∑

j=1

φjL
jYt + ǫt . (2.3.14)

Again, the process is stationary if the eigenvalues of the F-matrix are less
than one in absolute value or, equivalently, the roots of the Lag polynomial

1− φ1z − φ2z
2 − · · · − φpz

p = 0 (2.3.15)

exceed one in absolute value. In this case, the lag polynomial is invertible,
that is it can be written as the product of p infinite sums:

(
1− φ1L− φ2L

2 − · · · − φpL
p
)−1

=
1

(1− λ1L) . . . (1− λpL)
(2.3.16)

=
(
1 + λ1L + λ21L

2 + . . .
)
. . . (2.3.17)(

1 + λpL + λ2pL
2 + . . .

)
(2.3.18)

= 1 + ψ1L + ψ2L
2 + . . . (2.3.19)

With ψj = c1λ
j
1 + · · · + cpλ

j
p. Thus, there is a MA(∞) representation for

stationary AR(p) processes:

Yt = µ+

∞∑

j=0

ψjǫt−j (2.3.20)

with µ = c/ (1− φ1 − φ2 − · · · − φp).
Following the same logic as for the AR(2) process, the variance and the

autocovariances are given by

γj =

{
φ1γj−1 + φ2γj−2 + · · ·+ φpγj−p for j = 1, 2, . . .
φ1γ1 + φ2γ2 + · · ·+ φpγp + σ2 for j = 0

.
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2.4 ARMA(p,q) Processes

An ARMA(p,q) process combines the concepts of the MA(q) and AR(p) pro-
cesses:

Yt = c+

p∑

j=1

φjYt−j +

q∑

j=1

θjǫt−j + ǫt (2.4.1)

Provided that the roots of the autoregressive part’s lag-polynomial lie out-
side the unit circle, the polynomial is invertible and the process can be
epxressed as

Yt = µ+ ψ (L) ǫt (2.4.2)

with

ψ (L) =
(1 + θ1L + θ2L

2 + · · ·+ θqL
q)

(1− φ1L− φ2L2 − · · · − φpLp)

µ =
c

1− φ1 − φ2 − · · · − φp

.

2.5 Maximum Likelihood Estimation

We want to estimate the model parameters θ = (c, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq, σ
2)

′

of an ARMA process

Yt = c+

p∑

j=1

φjYt−j +

q∑

j=1

θjǫt−j + ǫt

by means of the maximum likelihood method. Therefore, we need to make
assumptions about the distribution of ǫt. In general, we will assume that
ǫt ∼ i.i.d. N (0, σ2). Our aim is to choose the parameters in way that maxi-
mizes the probability of drawing the sample we actually observe:

fYT ,YT−1,...,Y1
(yT , yT−1, . . . , y1; θ)

=fYT |YT−1,...,Y1
(yT |yT−1, . . . , y1; θ) fYT−1,YT−2,...,Y1

(yT−1, yT−2, . . . , y1; θ)

=fY1
(y1; θ)

T∏

t=2

fYt|Yt−1,Yt−2,...,Y1
(yt|yt−1, yt−2, . . . , y1; θ) (2.5.1)

2.5.1 Gaussian AR(1) Estimation

For the AR(1) process
Yt = c+ φYt−1 + ǫt (2.5.2)

we want to estimate θ = (c, φ, σ2)′. We know that for Gaussian ǫt, the first
observation is normally distributed, Y1 ∼ N (c/(1 − φ), σ2/(1 − φ2)). More-
over, the effects of Yt−2, . . . , Y1 on Yt work only through Yt−1, thus

fYt|Yt−1,Yt−2,...,Y1
(yt|yt−1, yt−2, . . . , y1; θ) = fYt|Yt−1

(yt|yt−1; θ) . (2.5.3)

Again, due to Gaussian ǫt, Yt conditional on Yt−1 is normally distributed:
Yt|Yt−1 ∼ N (c + φyt−1, σ

2). With this information, we can easily set up the
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likelihood function (2.5.1). The log likelihood function can be found by tak-
ing logs of the likelihood function:

L (θ) = log fY1
(y1; θ) +

T∑

t=2

log fYt|Yt−1
(yt, yt−1|θ) (2.5.4)

This function is also called the exact maximum likelihood function and
yields consistent estimators under the assumption of stationarity. More-
over, numerical methods for estimation are required. Conditioning on the
first observation, i.e. dropping the first summand of the right-hand side of
(2.5.4), yields conditional maximum likelihood estimates which are con-
sistent under non-stationarity and can be estimated by a simple OLS regres-
sion of Yt on its first p lags. Substituting the Gaussian probability density
function and maximizing (2.5.4) with respect to θ yields estimates for θ:

L (θ) =− 1

2
log(2π)− 1

2
log[σ2/(1− φ2)]

− {y1 − [c (1− φ)]}2
2σ2/(1− φ2)

− [(T − 1)/2] log(2π)

− [(T − 1)/2] log(σ2)−
T∑

t=2

[
(yt − c− φyt−1)

2

2σ2

]
(2.5.5)

2.5.2 Gaussian AR(p) Estimation

In order to estimate θ = (c, φ1, . . . , φp, σ
2)′ for an AR(p) process

Yt = c+ φ1Yt−1 + · · ·+ φpYt−p + ǫt (2.5.6)

we first rewrite the likelihood function (2.5.1):

fYT ,YT−1,...,Y1
(yT , yT−1, . . . , y1; θ)

=fYp,Yp−1,...,Y1
(yp, yp−1, . . . , y1; θ)

T∏

t=p+1

fYt|Yt−1,...,Y1
(yt|yt−1, . . . , y1; θ) (2.5.7)

Let’s collect the first p observations in a random vector yp = (Y1, . . . , Yp)
′. Its

variance-covariance matrix is given by

σ2Vp ≡ Var(yp)

=




E (Y1 − µ)2 E (Y1 − µ) (Y2 − µ) . . . E (Y1 − µ) (Yp − µ)

E (Y2 − µ) (Y1 − µ) E (Y2 − µ)2 . . . E (Y2 − µ) (Yp − µ)
...

...
. . .

...

E (Yp − µ) (Y1 − µ) E (Yp − µ) (Y2 − µ) . . . E (Yp − µ)2




=




γ0 γ1 . . . γp−1

γ1 γ0 . . . γp−2
...

...
. . .

...
γp−1 γp−2 . . . γ0


 (2.5.8)
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Due to the assumption of Gaussian ǫt, the random vector yp is normally
distributed, yp ∼ N (µp, σ

2Vp), where µp is a p × 1 vector containing the
expected values of Y1, . . . , Yp which are given by µ = c/(1−φ1−φ2−· · ·−φp).
Thus, we have can substitute the first factor of (2.5.7) with a multivariate
normal distribution.

Yt does only depend on the previous p observations, so we can rewrite

fYt|Yt−1,...,Y1
(yt|yt−1, . . . , y1; θ)

as
fYt|Yt−1,...,Yt−p

(yt|yt−1, . . . , yt−p; θ)

from which we know is a normal distribution as Yt|Yt−1, . . . , Yt−p ∼ N (c +
φ1yt−1 + · · · + φpyt−p, σ

2). Again, it is straightforward to set up the log-
likelihood function to maximize with respect to θ.

2.5.3 Gaussian MA(1) Estimation

Let’s now set up the likelihood function for a MA(1) process

Yt = µ+ ǫt + θǫt−1 (2.5.9)

We do not observe the ǫt’s, but it follows from

ǫt = Yt − θǫt−1 − µ (2.5.10)

that if we set the value of ǫ0 to zero, ǫ0 = 0, we can calculate the whole
sequence of {ǫ1, . . . , ǫT} in our sample. Thus, given our sample realisation
of {y1, . . . , yT} and the initial condition ǫ0 = 0, all ǫt’s are given as well.
In the following, we’re deriving the conditional likelihood function for a
MA(1) process, specifically conditional on ǫ0 = 0:

fYT ,...,Y1|ǫ0=0(yT , . . . , y1|ǫ0 = 0)

=fYT |YT−1,...,Y1,ǫ0=0(yT |yT−1, . . . , y1, ǫ0 = 0)fYT−1,...,Y1|ǫ0=0(yT−1, . . . , y1|ǫ0 = 0)
(2.5.11)

=fY1|ǫ0=0(y1|ǫ0 = 0)

T∏

t=2

fYt|Yt−1,...,Y1,ǫ0=0(yt|yt−1, . . . , y1, ǫ0 = 0) (2.5.12)

Both Y1|ǫ0 = 0 and Yt|Yt−1, . . . , Y1, ǫ0 = 0 are normally distributed, Y1|ǫ0 =
0 ∼ N (µ, σ2) and Yt|Yt−1, . . . , Y1, ǫ0 = 0 ⇔ Yt|ǫt−1 ∼ N (µ+ θǫt−1, σ

2).

2.5.4 Gaussian MA(q) Estimation

For the MA(q) process

Yt = µ+ ǫt + θ1ǫt−1 + θ2ǫt−2 + · · ·+ θqǫt−q (2.5.13)

we first condition on the first q observations:

ǫ0 = ǫ−1 = · · · = ǫ−q+1 = 0 (2.5.14)
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This allows us to iterate all ǫt by

ǫt = yt − µ− θ1ǫt−1 − θ2ǫt−2 − · · · − θqǫt−q (2.5.15)

for t = 1, 2, . . . , T . Define ǫ0 ≡ (ǫ0, ǫ−1, . . . , ǫ−q+1)
′, then

fYt,YT−1,...,Y1|ǫ0=0(yT , yT−1, . . . , y1|ǫ0 = 0; θ)

=fǫT ,ǫT−1,...,ǫ1|ǫ0=0(ǫT , ǫT−1, . . . , ǫ1|ǫ0 = 0; θ)

=fǫT |ǫT−1,...,ǫ1,ǫ0=0(ǫT |ǫT−1, . . . , ǫ1, ǫ0 = 0; θ)

· fǫT−1,...,ǫ1,ǫ0=0(ǫT−1, . . . , ǫ1, ǫ0 = 0; θ)

=
T∏

t=1

1√
2πσ2

e−ǫ2t/2σ
2

. (2.5.16)

Thus, the log likelihood function is given by

L (θ) = −T
2
log(2π)− T

2
log(σ2)−

T∑

t=1

ǫ2t
2σ2

. (2.5.17)

2.5.5 General Remarks on M-Estimators

The maximum likelihood estimator is an M-estimator, that is its objective
function is a sample average:

Qn(θ) =
1

n

n∑

t=1

m(wt; θ) (2.5.18)

with m(wt; θ) = log f(wt; θ) and thus Qn(θ) = 1
n

∑n
t=1 log f(wt; θ), given

that there is no serial correlation. The m × 1 vector wt collects all of our m
variables we observe in time t. Our estimator θ̂ is the k×1 parameter vector
that maximizes (2.5.18).

Let θ0 denote the true parameter vector and suppose that Qn(θ) is con-
cave over the parameter space for any data (w1, . . . ,wt). If there is a function
Q0(θ) that is uniquely maximized at θ0 (identification) andQn(θ) converges

in probability to Q0(θ) (pointwise convergence), then θ̂
p→ θ0, i.e. the esti-

mator θ̂ is consistent.
If {wt} is ergodic stationary, then Qn(θ) converges to E[m(wt; θ)], that is

Q0 is given by
Q0 = E[m(wt; θ)] (2.5.19)

Thus, the identification condition for consistency can be restated that, for a
concave function m(wt; θ), E[m(wt; θ)] is uniquely maximized by θ0.
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2.5.6 Asymptotic Normality of ML-Estimators

First of all, define symbols for the gradient (vector of first derivatives) and
the Hessian (matrix of second derivatives) of the m function:

s(wt; θ)
(k×1)

≡ ∂m(wt; θ)

∂θ
(2.5.20)

H(wt; θ)
(k×k)

≡ ∂s(wt; θ)

∂θ′ (2.5.21)

The first order condition for maximum of equation (2.5.18) can be expressed
as

∂Qn(θ̂)

∂θ
=

1

n

n∑

t=1

s(wt; θ̂) = 0 . (2.5.22)

Equation (2.5.22) can be rewrittten using the mean value theorem as

∂Qn(θ̂)

∂θ
=
∂Qn(θ0)

∂θ
+
∂2Qn(θ̄)

∂θ∂θ′

(
θ̂ − θ0

)

=
1

n

n∑

t=1

s(wt; θ0) +

[
1

n

n∑

t=1

H(wt; θ̄)

](
θ̂ − θ0

)
= 0 . (2.5.23)

Rearranging yields:

√
n
(
θ̂ − θ0

)
= −

[
1

n

n∑

t=1

H(wt; θ̄)

]−1
1√
n

n∑

t=1

s(wt; θ0) (2.5.24)

For ergodic stationary {wt}, we know that

1

n

n∑

t=1

H(wt; θ̄)
p→ E [H(wt; θ0)] (2.5.25)

and for i.i.d. observations

1√
n

n∑

t=1

s(wt; θ0)
d→ N (0,Σ) (2.5.26)

which allows us to apply the Slutzky theorem:

√
n
(
θ̂ − θ0

)
d→ N (0, (E [H(wt; θ0)])

−1
Σ (E [H(wt; θ0)])

−1) (2.5.27)

That is, θ̂ is asymptotically normal with

Avar(θ̂) = (E [H(wt; θ0)])
−1

Σ (E [H(wt; θ0)])
−1 (2.5.28)

under the assumptions that

1. {wt} is ergodic stationary,
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2. θ0 is in the interior of parameter space Θ,

3. m(wt; θ) is twice continously differentiable in θ for any wt,

4. 1√
n

∑n
t=1 s(wt; θ0)

d→ N (0,Σ),

5. E [H(wt; θ0)] is nonsingular.

If E [s(wt; θ0)] = 0, then

Σ = E [s(wt; θ0)s(wt; θ0)
′] (2.5.29)

which we assume to be equal to the expected information matrix times mi-
nus one:

E [s(wt; θ0)s(wt; θ0)
′] = −E [H(wt; θ0)] (2.5.30)

So equation (2.5.31) can be estimated by either

Âvar(θ̂)(1) = −
[
1

n

n∑

t=1

H(wt; θ̂)

]−1

(2.5.31)

or

Âvar(θ̂)(2) =

[
1

n

n∑

t=1

s(wt; θ̂)s(wt; θ̂)
′

]−1

. (2.5.32)

Note that for the variance of any unbiased estimator θ̂

Var(θ̂) ≥ [I(θ)]−1 (2.5.33)

has to hold, that is the minimum variance of the estimator is larger than
or equal to the inverse of the Fisher information matrix I(θ) (Cramer-Rao
lower bound) with

I(θ) ≡ −E[H(wt; θ̂)] (2.5.34)

and thus our estimator is – under the assumptions made here – asymptoti-
cally efficient as (2.5.31) converges to [I(θ)]−1.

2.6 Unit Root Processes

2.6.1 First Differencing

The AR(p) process

(
1− φ1L− φ2L

2 − · · · − φpL
p
)
yt = ǫt (2.6.1)

can be rewritten as

[
(1− ρL)−

(
ζ1L + ζ2L

2 + · · ·+ ζp−1L
p−1
)
(1− L)

]
yt = ǫt

⇔ yt = ρyt−1 + ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 + ǫt (2.6.2)
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with

ρ ≡ φ1 + φ2 + · · ·+ φp

ζj ≡ − (φj+1 + φj+2 + · · ·+ φp) for j = 1, 2, . . . , p− 1.

Let’s assume that we’re dealing with a unit root process, i.e. exactly one
root of the characteristic polynomial is equal to one and all other roots lie
outside the unit circle. Thus,

1− φ1 − φ2 − · · · − φp = 0

which implies that ρ = 1. Moreover, under H0 : ρ = 1:
(
1− φ1z− φ2z

2 − · · · − φpz
p
)
=(

1− ζ1z− ζ2z
2 − · · · − ζp−1z

p−1
)
(1− z)

equals zero for z = 1. It follows that the lag-polynomial on the left-hand
side of (

1− ζ1L− ζ2L
2 − · · · − ζp−1L

p−1
)
∆yt = ǫt

is invertible, which implies that first differencing of a unit root process yields
a stationary process.

2.6.2 Dickey-Fuller Test for Unit Roots

Case 1: True Process: Random Walk. Regression: No Constant, No Time
Trend

We assume the true process follows a random walk:

yt = yt−1 + ut. (2.6.3)

We estimate the parameter by a linear regression

yt = ρyt−1 + ut (2.6.4)

where ut is i.i.d. The OLS estimate for ρ is given as

ρ̂T =

T∑

t=1

yt−1yt

T∑

t=1

y2t−1

. (2.6.5)

Two test statistics with limiting distributions can be calculated under H0 :
ρ = 1:

T (ρ̂T − 1)
d→ (1/2) {W (1)2 − 1}∫ 1

0
W (r)2dr

(2.6.6)

The second test statistic is the usual t test:

tT =
ρ̂− 1

σ̂ρ̂T
(2.6.7)

where σ̂ρ̂T is the OLS standard error for ρ̂T . Be aware that (2.6.7) does not
have a limiting Gauss distribution.
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Case 2: True Process: Random Walk. Regression: Constant, No Time
Trend

As in case 1, the true process is assumed to follow a random walk:

yt = yt−1 + ut. (2.6.8)

Our regression model is given as

yt = α + ρyt−1 + ut. (2.6.9)

We can use the same test statistics as in case 1 – both have limiting distribu-
tions, though they differ from those in case 1.

Case 3: True Process: Random Walk with Drift. Regression: Constant, No
Time Trend

In this case, the true process is assumed to follow a random walk with drift:

yt = α + yt−1 + ut (2.6.10)

We model the process as:

yt = α+ ρyt−1 + ut (2.6.11)

Be aware that if the true process follows a random walk with drift, the time
series will show up a time trend. The alternative hypothesis does not in-
clude a time trend but only a constant though. Thus, if we reject H0 : ρ = 1
against H1 : ρ < 1, (2.6.11) still won’t be appropriate if our non-unit-root
time series shows up a time trend but we did not include it in this regres-
sion.

Case 4: True Process: Random Walk with Drift. Regression: Constant,
Time Trend

As in case 3, the true process follows:

yt = α + yt−1 + ut (2.6.12)

This time, we include a time trend in our regression:

yt = α + ρyt−1 + δt+ ut (2.6.13)

Augmented Dickey Fuller Test

The augmented Dickey Fuller works under the null that the true process
follows an AR(p) process with unit root. This may also be interpreted as
allowing for serial correlation in the random walk case. Thus, we use the
form (2.6.2) to express the AR(p) process

yt = ρyt−1 + ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 + ǫt (2.6.14)
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and apply our usual OLS estimation (a time trend or constant may be in-
cluded). Under H0 : ρ = 1, i.e. the process is a unit root process, we can use
the usual test statistics. We may equivalently restate (2.6.14) as

∆yt = θyt−1 + ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 + ǫt (2.6.15)

with θ ≡ ρ− 1 and calculate test statistic under H0 : θ = 0. In practice, given
that the true process follows an AR(p) process, we do not know the number
of lags p. In order to choose the number of lags, we can apply the Akaike
information criterion (AIC)

AIC = 2k − 2L (θ̂) (2.6.16)

where k is the number of estimated parameters. We calculate the AIC for
different numbers of lags and chose the model with the lowest AIC. Alter-
natively, the Bayesian information criterion (BIC) or Schwarz criterion

BIC = ln(n)k − 2L (θ̂) (2.6.17)

where n is our sample size.

2.7 Forecasting

2.7.1 Conditional Expectation Forecast

Let Y ∗
t+1|t denote a forecast of Yt+1 based on Xt. To evaluate the usefulness

of this forecast, we need to set up a loss function. The mean squared error
of a forecast is given by

MSE(Y ∗
t+1|t) ≡ E(Yt+1 − Y ∗

t+1|t)
2. (2.7.1)

It can be shown that among all forecasting rules, the expectation of Yt+1

conditional on Xt

Y ∗
t+1|t = E(Yt+1|Xt) (2.7.2)

minimizes the MSE (2.7.1).

2.7.2 Linear Projection Forecast

We may just consider forecasts Y ∗
t+1|t that are a linear function of Xt:

Y ∗
t+1|t = α′Xt (2.7.3)

If there exists an α such that the forecast error (Yt+1 −α′Xt) is uncorrelated
with Xt, i.e.

E[(Yt+1 −α′Xt)Xt] = 0
′, (2.7.4)

then α′Xt is called linear projection of Yt+1 on Xt. Among linear forecast-
ing rules, the linear projection produces the smallest MSE.



3 VECTOR AUTOREGRESSIVE MODELS 20

2.7.3 Box-Jenkins Modeling Philosophy

The Box-Jenkings approach to modeling time series consists of four steps:

1. Transform the data until covariance stationarity is given.

2. Set initial values of p and q for an ARMA(p.q) model (check sample
and partial autocorrelations).

3. Estimate φ(L) and θ(L).

4. Diagnostic analysis to check model consistency with respect to ob-
served time series.

3 Vector Autoregressive Models

3.1 Structural and Standard Form of the VAR

Let’s start with the following system of equations:

y1,t = k1 + b
(0)
12 y2,t + b

(0)
13 y3,t + · · ·+ b

(0)
1n yn,t +

p∑

j=1

n∑

k=1

b
(j)
1k yk,t−j + u1,t

y2,t = k2 + b
(0)
21 y1,t + b

(0)
23 y3,t + · · ·+ b

(0)
2n yn,t +

p∑

j=1

n∑

k=1

b
(j)
2k yk,t−j + u2,t

...

yn,t = kn + b
(0)
n1 y1,t + b

(0)
n2 y2,t + · · ·+ b

(0)
n(n−1)y(n−1),t +

p∑

j=1

n∑

k=1

b
(j)
nkyk,t−j + un,t

That is, at each point in time t we observe n variables which depend on the
contemporaneous realisations of all the other n−1 variables as well as p lags

of all n variables. The parameter b
(j)
ik is the direct influence of the realisation

of variable k in period t− j on the contemporaneous value of variable i. As
a next step, bring all contemporaneous observations to the left-hand side:

y1,t − b
(0)
12 y2,t − b

(0)
13 y3,t − · · · − b

(0)
1n yn,t = k1 +

p∑

j=1

n∑

k=1

b
(j)
1k yk,t−j + u1,t

y2,t − b
(0)
21 y1,t − b

(0)
23 y3,t − · · · − b

(0)
2n yn,t = k2 +

p∑

j=1

n∑

k=1

b
(j)
2k yk,t−j + u2,t

...

yn,t − b
(0)
n1 y1,t − b

(0)
n2 y2,t − · · · − b

(0)
n(n−1)y(n−1),t = kn +

p∑

j=1

n∑

k=1

b
(j)
nkyk,t−j + un,t

and rewrite the system in matrix notation:

B0yt = k +B1yt−1 +B2yt−2 + · · ·+Bpyt−p + ut (3.1.1)
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with

yt
(n×1)

≡




y1,t
y2,t

...
yn,t


 , k

(n×1)
≡




k1
k2
...
kn


 , ut

(n×1)
≡




u1,t
u2,t

...
un,t


 ,

B0
(n×n)

≡




1 −b(0)12 . . . −b(0)1n

−b(0)21 1 . . . −b(0)2n
...

...
. . .

...

−b(0)n1 −b(0)n2 . . . 1


 , Bj

(n×n)

≡




b
(j)
11 b

(j)
12 . . . b

(j)
1n

b
(j)
21 b

(j)
22 . . . b

(j)
2n

...
...

. . .
...

b
(j)
n1 b

(j)
n2 . . . b

(j)
nn


 .

If B0 is invertible, we can write (3.1.1) as

yt = c +Φ1yt−1 +Φ2yt−2 + · · ·+Φpyt−p + ǫt (3.1.2)

with

c ≡ B−1
0 k,

Φs ≡ B−1
0 Bs,

ǫt ≡ B−1
0 ut.

This is the standard form of the VAR. We can rewrite (3.1.2) using the lag
operator as

Φ (L)yt = c+ ǫt (3.1.3)

with Φ (L) ≡ (In −Φ1L−Φ2L
2 − · · · −ΦpL

p). The eigenvalues of F are the
values that satisfy

|Inλp −Φ1λ
p−1 −Φ2λ

p−2 − · · · −Φp| = 0 (3.1.4)

and the VAR(p) is stationary iff |λ| < 1 for all λ satisfying (3.1.4) or, equiva-
lently, iff all z satisfying

| In −Φ1z −Φ2z
2 − · · · −Φpz

p

︸ ︷︷ ︸
=Φ(z)

| = 0 (3.1.5)

lie outside the unit circle.
If the vector process is covariance stationary, the vector of expected val-

ues is given as
µ = (In −Φ1 −Φ2 − · · · −Φp)

−1
c (3.1.6)

and we can rewrite (3.1.2) in terms of deviations from its mean:

yt − µ = Φ1 (yt−1 − µ) +Φ2 (yt−2 − µ) + · · ·+Φp (yt−p − µ) + ǫt (3.1.7)
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Let’s collect the last p observations of our n variables in a vector and define:

ξt
(np×1)

≡




yt − µ

yt−1 − µ
...

yt−p+1 − µ


 , F

(np×np)
≡




Φ1 Φ2 . . . Φp−1 Φp

In 0 . . . 0 0

0 In . . . 0 0

...
...

. . .
...

...
0 0 . . . In 0



,

vt
(np×1)

≡




ǫt
0

...
0


 .

This allows us to write the VAR(p) model in a VAR(1) form:

ξt = Fξt−1 + vt (3.1.8)

Forward iteration yields:

ξt = Fξt−1 + vt

ξt+1 = Fξt + vt+1

ξt+2 = F [Fξt + vt+1] + vt+2

= vt+2 + Fvt+1 + F 2ξt

...

ξt+s = vt+s + Fvt+s−1 + F 2vt+s−2 + · · ·+ F s−1vt+1 + F sξt (3.1.9)

The first n rows of (3.1.9) are given as

yt+s =µ+ ǫt+s +Ψ1ǫt+s−1 +Ψ2ǫt+s−2 + · · ·+Ψs−1ǫt+1

+ F
(s)
11 (yt − µ) + F

(s)
12 (yt−1 − µ) + · · ·+ F

(s)
1p (yt−p+1 − µ)

(3.1.10)

with Ψj = F
(j)
11 and F

(j)
11 standing for the upper left block of the F matrix

raised to the jth power. If all the eigenvalues of F lie inside the unit circle,
it can be shown that

lim
s→∞

F s = 0

and thus yt can be expressed as

yt = µ+ ǫt +Ψ1ǫt−1 +Ψ2ǫt−2 + . . .

= µ+Ψ (L) ǫt (3.1.11)

with Ψ (L) ≡ (In +Ψ1L +Ψ2L
2 + . . . ). This is the VMA(∞) representation

of the VAR(p) process. The relationships presented so far imply that

Φ (L)Ψ (L) = In (3.1.12)

and hence

In =
(
In +Ψ1L +Ψ2L

2 + . . .
) (

In −Φ1L−Φ2L
2 − · · · −ΦpL

p
)

= In + (Ψ1 −Φ1) L + (Ψ2 −Φ1Ψ1 −Φ2) L
2 + . . .
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which can be used to iterate Ψs:

Ψs = Φ1Ψs−1 +Φ2Ψs−2 + · · ·+ΦpΨs−p (3.1.13)

for s ≥ 1.
Differentiating yt+s with respect to ǫ′t yields

∂yt+s

∂ǫ′t
= Ψs, (3.1.14)

i.e. the (i, j) element of Ψs is the effect of a shock ǫj,t on variable yi,t+s,
i, j ∈ {1, . . . , n}. We may be interested in the effects of a shock in uj,t on
yi,t+s. Define D ≡ Var(ut), Ω ≡ Var(ǫt) and A ≡ B−1

0 . Recall that ǫt = Aut

from which follows
∂yt+s

∂u′
t

= ΨsA. (3.1.15)

Cholesky Decomposition

That is, to find the response matrix to a shock in uj,t we first need to find A.
Ω is given by

Ω = Var(Aut)

= ADA′ (3.1.16)

If we assume A to be a lower-triangular matrix with ones on the main di-
agonal, then we can find exactly one matrix A and D as Ω is a positive
definite symmetric matrix (triangular factorization), where D is a matrix
with djj 6= 0 and dij = 0 for i 6= j. Define P ≡ AD1/2, then (3.1.16) can be
written as

ADA′ = PP ′ (3.1.17)

with

P =




√
d11 0 0 . . . 0

a21
√
d11

√
d22 0 . . . 0

a31
√
d11 a32

√
d22

√
d33 . . . 0

...
...

...
. . .

...
an1

√
d11 an2

√
d22 an3

√
d33 . . .

√
dnn




which is the so-called Cholesky decomposition from which we can easily
derive our A and D matrices.

3.2 Forecast Error and Variance Decomposition

The forecast of yt+s given yt,yt−1, . . . is given as

ŷt+s|t =µ+ F
(s)
11 (yt − µ) + F

(s)
12 (yt−1 − µ)

+ · · ·+ F
(s)
1p (yt−p+1 − µ)

(3.2.1)

with ŷt+s|t ≡ E(yt+s|yt,yt−1, . . . ), and thus the forecast error is

yt+s − ŷt+s|t = ǫt+s +Ψ1ǫt+s−1 +Ψ2ǫt+s−2 + · · ·+Ψs−1ǫt+1 . (3.2.2)



4 COINTEGRATION MODELS 24

Hence, the mean squared error of the forecast is

MSE
(
ŷt+s|t

)
= E

[(
yt+s − ŷt+s|t

) (
yt+s − ŷt+s|t

)′]

= Ω+Ψ1ΩΨ
′
1 +Ψ2ΩΨ

′
2 + · · ·+Ψs−1ΩΨ

′
s−1 . (3.2.3)

Using the fact that

ǫt = Aut = a1u1t + a2u2t + · · ·+ anunt (3.2.4)

where aj is the jth column of matrix A and the fact that the ujt’s are uncor-
related, we can write

Ω = E (ǫtǫ
′
t)

= a1a
′
1Var (u1t) + a2a

′
2Var (u2t) + · · ·+ ana

′
nVar (unt) . (3.2.5)

Substituting (3.2.5) into (3.2.3), we can write the MSE as the sum of n terms:

MSE
(
ŷt+s|t

)
=

n∑

j=1

[Var(ujt)(aja
′
j +Ψ1aja

′
jΨ

′
1

+Ψ2aja
′
jΨ

′
2 + · · ·+Ψs−1aja

′
jΨ

′
s−1)]

(3.2.6)

Each summand of (3.2.6) is the contribution of the variance of ujt to the MSE
of the s-period-ahead-forecast.

4 Cointegration Models

4.1 Definition of Cointegration

An (n × 1) vector time series (vector stochastic process) yt is cointegrated
if each of the series yit, i ∈ {1, 2, . . . , n} is integrated of order 1 (I(1)), i.e.
a unit root process, with a linear combination of the processes a′yt being
stationary, i.e. I(0), for some nonzero (n× 1) vector a. The vector a is called
cointegrating relation. In general, the vector stochastic process yt is said to
be CI(d,b) if all scalar stochastic processes yit of yt are I(d) and there exists a
vector a′ such that a′yt is I(d-b).

4.2 Cointegrating Vectors

If there exists a cointegrating vector a, then it is not unique, as if a′yt is
stationary, then any stochastic process ba′yt for any scalar b 6= 0. Obviously,
the cointegrating vectors a and ba are linearly dependent.

In general, in case of an n-variable vector time series, there can be at most
h < n linearly independent (n× 1) cointegrating vectors a1,a2, . . . ,ah such
that A′yt is a stationary vector time series, with A′ defined as

A′
(h×n)

≡




a′
1

a′
2
...
a′
h


 . (4.2.1)



4 COINTEGRATION MODELS 25

The matrix A′ is the basis for the space of cointegrating vectors. Since yt is
assumed to be I(1), its first difference vector ∆yt is stationary with a vector
of expected values δ ≡ E(∆yt). First of all, define

ut ≡ ∆yt − δ. (4.2.2)

Write ut applying the Wold representation theorem:1

ut = ǫt +Ψ1ǫt−1 +Ψ2ǫt−2 + · · · = Ψ(L)ǫt (4.2.3)

with Ψ(L) ≡ ∑∞
j=0ΨjL

j and Ψ0 ≡ In. We suppose that ǫt has a zero ex-
pected value and its elements are pairwise uncorrelated, both contempora-
neously and over time.

Then, two conditions for stationarity of A′yt have to hold:

A′
Ψ(1) = 0, (4.2.4)

A′δ = 0 (4.2.5)

with Ψ(1) = In +Ψ1 +Ψ2 +Ψ3 + . . . . To see that these two conditions have
to hold, rewrite (4.2.2) as

yt = y0 + δ · t+ u1 + u2 + · · ·+ ut

= y0 + δ · t+Ψ(1) · (ǫ1 + ǫ2 + · · ·+ ǫt) + ηt − η0 (4.2.6)

which is known as the Beveridge-Nelson decomposition. It follows from
(4.2.6) that for stationarity of A′yt, (4.2.4) and (4.2.5) have to hold.

Moreover, (4.2.4) implies that Ψ(L) is not invertible as |Ψ(z)| = 0 for
z = 1, i.e. the first-differences of a cointegrated process only have a VMA
but no VAR(p) representation. Thus, a VAR(p) model is not appropriate
to model cointegrated time series in first-differences although these first-
differences are stationary.

Phillips’s Triangular Representation

The cointegrating base A′ can be written as

A′ =




1 0 . . . 0 −γ1,h+1 −γ1,h+2 . . . −γ1,n
0 1 . . . 0 −γ2,h+1 −γ2,h+2 . . . −γ2,n
...

...
. . .

...
...

... . . .
...

0 0 . . . 1 −γh,h+1 −γh,h+2 . . . −γh,n




=
[
Ih −Γ

′ ] (4.2.7)

1The Wold representation theorem states that any covariance-stationary time series yt
can be written as the sum of two time series, with one summand being deterministic
and the other one being stochastic:

yt = µt +

∞∑

j=0

ψjǫt−j
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with Γ
′ being an (h × g) coefficient matrix and g ≡ n − h. Define the (by

construction stationary) (h× 1) residual-vector zt ≡ A′yt for a set of cointe-
grating relations. The mean of zt is given by µ∗

1 ≡ E(zt), the deviation of zt

from its mean by z∗
t ≡ zt − µ∗

1. By partioning yt as

yt
(n×1)

=




y1t
(h×1)

y2t
(g×1)


 (4.2.8)

we can express zt as

z∗
t + µ∗

1 =
[
Ih −Γ

′ ]
[
y1t

y2t

]
(4.2.9)

or after rearranging

y1t
(h×1)

= Γ
′

(h×g)
· y2t
(g×1)

+ µ∗
1

(h×1)

+ z∗
t

(h×1)

. (4.2.10)

VAR Representation

Let yt be represented by an VAR(p) process:

Φ(L)yt = α+ ǫt (4.2.11)

Further suppose that ∆yt has the following Wold representation:

(1− L)yt = δ +Ψ(L)ǫt (4.2.12)

Premultiplying (4.2.12) by Φ(L) yields

(1− L)Φ(L)yt = Φ(L)δ +Φ(L)Ψ(L)ǫt (4.2.13)

and after substitution of (4.2.11) into (4.2.13)

(1− L)ǫt = Φ(L)δ +Φ(L)Ψ(L)ǫt (4.2.14)

as (1 − L)α = 0. For this equality to hold, the following relationships must
hold:

Φ(1)δ = 0, (4.2.15)

Φ(1)Ψ(1) = 0. (4.2.16)

Let π′ denote any row of Φ(1), then π′
Ψ(1) = 0

′ and π′δ = 0 imply that π
is a cointegrating vector, that is π′ = b′A′ which must hold for any row of
Φ(1) and thus

Φ(1) = BA′, (4.2.17)

i.e. there exists an (n× h) matrix B for which (4.2.17) holds.
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Error-Correction Representation

Any VAR can be written as

yt = ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 +α+ ρyt−1 + ǫt (4.2.18)

with

ρ ≡ Φ1 +Φ2 + · · ·+Φp, (4.2.19)

ζs ≡ −(Φs+1 +Φs+2 + · · ·+Φp) (4.2.20)

for s = 1, 2, . . . , p− 1. First differencing yields

∆yt = ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 +α+ ζ0yt−1 + ǫt (4.2.21)

with ζ0 ≡ ρ − In = −Φ(1). If our vector process is cointegrated, we can
express (4.2.21) as

∆yt = ζ1∆yt−1 + ζ2∆yt−2 + · · ·+ ζp−1∆yt−p+1 +α−Bzt−1 + ǫt (4.2.22)

with zt ≡ A′yt−1 and ζ0 substituted with −BA′. This is the error-correction
representation of the cointegrated system.

4.3 Testing for Cointegrating Relationships

Engle-Granger Two-Step-Procedure

To test for a cointegrating relationship, in a first step regress the level of one
variable on the level of all other variables, back out the estimated error term
ǫ̂t and check the time series of estimated error terms for stationarity, i.e. us-
ing a standard Dickey-Fuller test. If the null hypothesis of non-stationarity
is rejected, go on to the second step: Estimate the error-correction model
(4.2.22) by replacing the (h × 1) vector zt−1 by ǫ̂t. This procedure can only
account for one cointegrating relationship and the result may thus depend
on the ordering of the variables, that is – in case of n > 2 where more than 1
cointegrating relationship could exist – how the regression in step 1 is per-
formed.

5 Identification of Structural VARs

5.1 Identification under Stationarity

Recall the VAR(p) process with ǫt ≡ Wut

yt = α+Φ1yt−1 +Φ2yt−2 + · · ·+Φpyt−p +Wut (5.1.1)

where W is equal to our A matrix from the Cholesky decomposition if we
set the main diagonal elements of W equal to 1 (which we will assume in
the following). Now our reduced form shocks’ variance-covariance matrix
is given by Ω = WW ′, where we have set Var(ut) = In.
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To identify our W matrix in the n variables case, we need to impose
n(n − 1)/2 restrictions on the elements of W . Setting the (i, j)-element of
W , wij , equal to zero implies no contemporaneous effect of shock ujt on
variable yit. Setting elements of W equal to zero, W must maintain its full
rank – as losing one or more ranks (e.g. by setting one row equal to zero)
results in a singular matrix, but W has to be invertible in order to write the
standard form VAR in its structural form.

Stationary VAR(p) processes have a VMA(∞) representation

yt = µ+Wut +Ψ1Wut−1 +Ψ2Wut−2 + . . . , (5.1.2)

that is the total long-term impact of structural innovation uj on yi is given
by the (i, j)-element of matrix

L ≡ W +Ψ1W +Ψ2W + · · · = Ψ(1)W . (5.1.3)

Instead of imposing n(n − 1)/2 restrictions on our W matrix, we may also
impose m restrictions on L and the remaining n(n−1)/2−m restrictions on
W . As our process is assumed to be stationary, Ψ(1) is just the inverse of
Φ(1).

5.2 Identification under Cointegration

In case of cointegration, the VAR(p) has no VMA(∞) representation in lev-
els due to non-stationarity. Still, there is a VMA(∞) representation in first
differences. The VAR in levels has the following Beveridge-Nelson decom-
position

yt = δt+Ψ

t∑

i=1

ǫi + ηt + y0 − η0

= δt+ΨW

t∑

i=1

ui + ηt + y0 − η0 (5.2.1)

with Ψ ≡ Ψ(1). The (i, j)-element of the impact matrix P ≡ ΨW gives the
effect of a random walk in uj on variable yi. Hence, restrictions concerning
long-run effects of shocks in variable yj on variable yi are imposed by setting
elements of the P matrix equal to zero.

5.3 Estimation Procedure

First of all, we estimate Ψ from the ML estimates of the VECM coefficients,
that is estimate the VECM subject to ζ0 = −BA′ and compute the orthog-

onal complement of Â and B̂, Â⊥ and B̂⊥. Then Ψ̂ can be computed as:

Ψ̂ = Â⊥

[
B̂′

⊥

(
In −

p−1∑

i=1

ζ̂i

)
Â⊥

]−1

B̂′
⊥ (5.3.1)
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Let’s now derive the likelihood function for our VAR(p) process. Assuming
Gaussian ǫt, ǫt has the following density function:

fǫt(ǫt) =
1

(2π)n/2|Ω|1/2 exp
(
−1

2
ǫ′tΩ

−1ǫt

)
(5.3.2)

As the ǫt’s and the yt’s are just different sides of the same coin, we can write
the log likelihood function as

L (y;Θ) = −T n
2
ln(2π)− T

1

2
ln |WW ′| − 1

2

T∑

t=1

ǫt(WW ′)−1ǫt (5.3.3)

6 Volatility Models

6.1 Autoregressive Conditional Heteroskedasticity (ARCH)

The AR(p) model

yt = c + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + ut (6.1.1)

with ut white noise implies a constant unconditional variance σ2 of ut. Still,
the conditional variance of ut may change over time. A white noise process
satisfying

u2t = ζ + α1u
2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m + wt (6.1.2)

with

E(wt) = 0,

E(wtwτ ) =

{
λ2 if t = τ

0 if t 6= τ
,

i.e. the squared white noise process follows an AR(m) process, is called
autoregressive conditional heteroskedastic process of order m. For u2t to
be covariance stationary, the roots of

1− α1z − α2z
2 − · · · − αmz

m = 0 (6.1.3)

have to lie outside the unit circle. For u2t to be nonnegative, wt has to be
bounded from below by −ζ with ζ > 0 and αj ≥ 0 for j = 1, 2, . . . , m. In this
case, the unconditional white noise variance is given by

σ2 = E(u2t ) = ζ/(1− α1 − α2 − · · · − αm). (6.1.4)

We may also specify that ut satisfies

ut =
√
ht · vt (6.1.5)

with {vt} an i.i.d. sequence with zero mean and unit variance. If ht follows

ht = ζ + α1u
2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m (6.1.6)

then we can express u2t as

ht · v2t = ht + wt (6.1.7)

implying that the conditional variance of wt is not constant over time:

wt = ht · (v2t − 1) (6.1.8)
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6.2 Testing for ARCH Effects

Ljung-Box Statistics

The Ljung-Box statistics works under the null hypothesis H0 : u2t is white

noise and is given by

Q = T (T + 2)

L∑

τ=1

ρ̂û2(τ)

T − τ
(6.2.1)

with L ≈ T/4 and Q ∼ χ2(L). The τ th-order error autocorrelations ρ̂û2(τ)
are given by

ρ̂û2(τ) ≡
∑T

t=τ+1(û
2
t − σ̂2)(û2t−τ − σ̂2)

∑T
t=1(û

2
t − σ̂2)2

(6.2.2)

where the û2t are the residuals from a ARMA(p,q) estimation.

Lagrange Multiplier Test

The Lagrange multiplier test works under the null H0 : u2t is white noise as
well and can be obtained by first of all regressing the ARMA(p,q) residuals
û2t on a constant and lagged residuals:

û2t = α0 + α1û
2
t−1 + α2û

2
t−2 + · · ·+ αmû

2
t−m + ǫt (6.2.3)

Then our test statistics under H0 : α0 = α1 = · · · = αm = 0 is TR2 ∼ χ2(m).

Appendix

Probability Theory

A probability space is given by (Ω,F , P ) where Ω – the sample space – rep-
resents a set of all possible outcomes, where an outcome is defined as the
result of a single execution of the underlying model. F is a σ-algebra: A
σ-algebra is a set of subsets of Ω including the null set. Its elements are
called events and thus F is called event space. The probability measure P
is a function P : F → [0, 1], i.e. P maps an event (an element) of set F on a
real number between 0 and 1.

Example

You draw a playing card from a set of four cards. The deck consists of the
following 3 cards: 1×Ace, 1×King and 1×Queen. Ω is given by

{Ace,King,Queen} ,

F by

{{}, {Ace}, {King}, {Queen}, {Ace,King},
{Ace,Queen}, {King,Queen}, {Ace,King,Queen}} .

The probability of drawing Ace or King is given by P ({Ace,King}) = 2/3.
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Convergence of Random Variables

A sequence of random variables X1, X2, . . . converges in distribution if

lim
n→∞

Fn(x) = F (x)

where F and Fn are the cumulative distribution functions of X and Xn.
This kind of convergence does not imply that the random variables’ density
functions converge as well. Convergence in distribution is also denoted as

Xn
d→ X .

Convergence in probability is defined as

lim
n→∞

P(|Xn −X| ≥ ǫ) = 0

which is also denoted
Xn

p→ X .

Convergence in probability implies convergence in distribution, the oppo-
site is not true.

A third kind of convergence is almost sure convergence:

P
(
lim
n→∞

Xn = X
)
= 1
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