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1. Introduction

Abstract

This paper uses US and German GDP growth as well as bond yield
spread data to examine the predictive power of the yield curve. A simple
linear VAR as well as non-linear VARs which include a structural break
and a threshold (SBVAR, TSVAR, SBTVAR) are estimated by numeri-
cal methods to compute recession probabilities. Based on these probabil-
ities, a threshold is defined on when to predict a recession and these pre-
diction results are evaluated. We compare our results to those obtained
by a static, dynamic, autoregressie and a dynamic-autoregressive pro-
bit model. We confirm the result that the yield spread has predictive
power with respect to recession forecasting, and we find that this re-
lationship still holds for latest recession of 2007/08 for both the US
and Germany. Whereas including a structural break improves the fore-
casting performance for the US, this is not the case for Germany. In
addition, autoregressive probits are shown to perform best at recession
forecasting, however this is mainly due to the inclusion of a lagged re-
cession dummy variable which results in a failure to correctly forecast
the start and ending recession quarters.

1. Introduction

The latest financial crisis and the following recession of 2007/08 in the US
and Europe have led to criticism towards economists that they did not see
the crisis coming. Despite predictions being very difficult, especially if they
are about the future (Niels Bohr), we will attempt in this paper to re-evaluate
the predictive power of the spread between long-term and short-term bond
yields using data for the US and Germany that include the most recent fi-
nancial crisis. For both politicians and central banks, it is essential to be
able to react to upcoming downturns in economic activity on time, e.g. by
decreasing interest rates and conducting open market operations. Intensive
research has been done regarding the forecasting power of the yield curve,
given the fact that in the past, major recessions haven been preceded by an
inverted yield curve, i.e. short-term bond yields which lie above long-term
bond yields. Chinn and Kucko (2010) perform a cross-country analysis and
find that European country models perform better when using more recent
data. Duarte, Venetis, and Payac (2005) attempt to predict real growth and
recession probabilities for Euro area countries using linear and non-linear
regression models. They find that there are significant non-linearities and
confirm the ability of the yield curve to anticipate recessions. An overview
on recent literature in the field is provided by Wheelock and Wohar (2009):
The general consensus is that the yield curve has good predictive power,
however it is observed that this predictive power has decreased since the
1980s for the US. However, there is no generally accepted theory why the
yield curve has this forecasting power.

When predicting recessions, we first of all need to define the event of a
recession. On the one hand, for instance, one may use the recession dates
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2. Theoretical Background: Relationship between Yields and Economic Activity

provided by The National Bureau of Economic Research (NBER) which de-
termines recession periods for the US ex-post. On the other hand, formal
algorithms for recession dating may be applied: Chauvet and Hamilton
(2005) provide an algorithm for real-time business cycle dating. They show
that their dating method yields results mostly consistent with NBER dates,
showing that it is possible to determine NBER business cycles not only ex-
post, but as soon as GDP growth data for that quarter are available. An-
other definition states that a period of two consecutive quarters of negative
growth marks times of recession. In this paper, we still stick to the NBER
and ECRI recession periods for the probit models and any forecast evalu-
ation and will use a criterion based on negative growth rates for the VAR
models.

The structure of this paper is as follows: In section 2 we will take a look at
two theories that have implications on the relationship between economic
activity and the yield spread: First, we consider the Expectation Hypothesis
which implies that when future short-term spot rates are expected to rise,
the yield curve is inverted. Second, we will simulate a consumption-based
asset pricing model and show that a stochastic production economy implies
a positive correlation between spreads and economic growth.

Section 3 explains the estimation methods for the linear and non-linear
VAR models as well as the probit models.

In section 4 we present our data basis, discuss the estimation results and
illustrate our forecast evaluation methods.

Finally, section 5 summarises our results and points out problems that
need to be approached in future research.

2. Theoretical Background: Relationship between

Yields and Economic Activity

2.1. An Expectation Hypothesis Explanation

A simple textbook explanation for the slope of the yield curve can e.g. be
found in Cochrane (2005): No abitrage requires that the τ -period return
equals the return on consecutively investing at the prevailing one-period
forward rates which can be formally expressed as

exp(rτt τ) = exp(r1t + f t+1
t + · · ·+ f τ−1

t )

where f t+n
t is the one-period forward rate at time t for investing 1 unit of

currency from time t + n to t+ n+ 1. This can also be stated as

rτt =
1

τ
(r1t + f t+1

t + · · ·+ f τ−1
t ).

Now assume that the the expectation hypothesis holds, i.e. forward rates
are unbiased estimators of future spot rates: f t+1

t = Et(r
1
t+1). Then the no-

arbitrage condition can be written as

rτt =
1

τ
Et(r

1
t + r1t+1 + · · ·+ r1t+τ−1)

2



2. Theoretical Background: Relationship between Yields and Economic Activity

Now assume that the yield curve is upward-sloping, i.e. rτt > r1t . Given that
the long-term rate is an average of expected short-term rates, this can only
be true if

1

τ − 1
Et(r

1
t+1 + · · ·+ r1t+τ−1) > r1t

i.e. if future short-term spot rates are on average expected to increase.1 The
same argument can be made for downward-sloping curves: If the curve
is inverted, this is because future spot rates are expected to decrease. If
the monetary authority always lowers short-term interest rates in response
to periods of macroeconomic and financial distress (”recession”) which is
anticipated by market participants, then any recession would be preceded
by an inverted yield curve. Note, however, that the reverse is not true: If
short-term rates are expected to decline due to other factors than monetary
operations, then an inverted curve need not be followed by a recession.

2.2. A Consumption Smoothing Explanation

Harvey (1988) uses the consumption-based asset pricing model to derive a
relationship between expected future consumption growth and the slope of
the yield curve. Suppose the household can decide on whether to consume
its income or invest into τ -period real zero-coupon bonds of price pτt , τ =
1, 2, . . . ,M . The household faces the following intertemporal optimization
problem

max
{ct,bτt }

∞

t=0

∞∑

t=0

βt
E(u(ct)|F0)

s.t. ct +
M∑

τ=1

pτt b
τ
t = yt +

M∑

τ=1

bτt−τ ∀ t

(2.2.1)

where bτt is the amount of τ -period bonds purchased in time t. In the fol-
lowing, the conditional expectation E(·|Ft) will be denoted as Et(·). Fur-
thermore let the log-income endowment follow an autoregressive process
of order one:

ln(yt+1) = ρ ln(yt) + ut+1 (2.2.2)

with ut ∼ N (0, σ2
u). This results in the first-order conditions

pτt = Et(m
τ
t )

∀ τ = 1, 2, . . . ,M
(2.2.3)

where mτ
t ≡ βτu′(ct+τ )/u

′(ct). In particular, the following specification for
the utility function u(c) = (c1−γ − 1)/(1 − γ) yields the stochastic discount
factor to discount future cash flows occuring at time t + τ back to time t as

mτ
t = βτ

(
ct+τ

ct

)−γ

(2.2.4)

1The proof is straightforward and given in appendix C.1.
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2. Theoretical Background: Relationship between Yields and Economic Activity

where γ is the Arrow-Pratt measure of relative risk aversion. Note that the
price of a risk-free zero-coupon bond is pτt = exp(−rτt τ) and therefore the
annualized risk-free rate is given by rτt = − ln(pτt )/τ . Let us now define the
τ -period spread as

Sτ
t ≡ rτt − r1t (2.2.5)

and τ -period annualized growth rates of income endowment and consump-
tion as ŷτt ≡ ln(yt+τ/yt)/τ and ĉτt ≡ ln(ct+τ/ct)/τ . We are now interested in
the correlation between income growth (which is GDP growth in our setup)
and the spread, i.e. Corr(Sτ

t , ŷ
τ
t ). It is shown by de Lint and Stolin (2003)

that this this correlation is actually negative for τ > 1 and ρ < 1 who also
note that the literature occasionally misinterpretes that the indeed positive
correlation Corr(rτt , ŷ

τ
t ) implies a positive correlation between spread and

income growth. However, they suggest to overcome this contradiction with
empirical data by including the production sector in their model such that
the budget constraint in this stochastic production economy (SPE) is now

ct + it +
M∑

τ=1

pτt b
τ
t = yt +

M∑

τ=1

bτt−τ ∀ t (2.2.6)

where
it = kt+1 − (1− d)kt (2.2.7)

and
yt = θtk

α
t , (2.2.8)

i.e. capital in the following period is given by the depreciated current-
period capital plus investment and this capital is used in combination with
technology θt to produce the output yt. The log technology variable is again
assumed to follow an autoregressive process of order one:

ln(θt) = ρ ln(θt−1) + ut (2.2.9)

with ut ∼ N (0, σ2
u) and i.i.d. The FOC (2.2.3) still holds, however a second

FOC determining the consumption-investment decision is now given by

c−γ
t = Et{βc−γ

t+1

(
αθt+1k

α−1
t+1 + 1− d

)
} (2.2.10)

Moreover, in equilibrium the household does not wish to hold any bonds,
thus bτt = 0 for all τ .

Stochastic Production Economy: A Simulation Study

The SPE model as presented above cannot be solved analytically but needs
to be simulated numerically for a given set of parameters. The approach
used in this paper to solve the model is the Parameterizing Expectations ap-
proach as first introduced by den Haan and Marcet (1990) and which is also
used by de Lint and Stolin (2003). The idea behind their algorithm is to start
the simulation by approximating the integral in (2.2.10) by a polynomial in
the state variables kt and θt. The procedure as for example described in the
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2. Theoretical Background: Relationship between Yields and Economic Activity

appendix of den Haan (1995) goes as follows: First, fix an initial level for the
capital stock k1 = k̄ and and write the right-hand side of (2.2.10) as an nth
order polynomial, i.e.

Et{βc−γ
t+1

(
θt+1αk

α−1
t+1 + 1− d

)
} = Pn(kt, θt)

= exp(a1 + a2 ln(kt) + a3 ln(θt) + a4 ln(kt)
2 + . . . )

where the exponential function guarantees that consumption is positive for
any parameter vector a ≡ (a1, a2, . . . )

′. In this paper we choose a second-
order polynomial such that

Pn(kt, θt) = exp(a1 + a2 ln(kt) + a3 ln(θt) + a4 ln(kt)
2 + a5 ln(θt)

2).

As a next step, simulate the (log) technology path over Tsim periods as given
by equation (2.2.2) and fix an initial parameter vector a0. Given a0, {θt}t=Tsim

t=1

and k1 = k̄, the polynomial plus the budget constraint (2.2.6) in combination
with equations (2.2.7) and (2.2.8) yield

c−γ
1 = P2(k1, θ1)

k2 = θ1k
α
1 − c1 + (1− d)k1

which finally gives the series {ct, kt}t=Tsim

t=1 . Define zt+1 ≡ βc−γ
t+1(αθt+1k

α−1
t+1 +

1−d) and note that the polynomial is supposed to approximate Et(zt+1), then
a new estimate for a is obtained through a nonlinear least squares regression
of zt+1 on the polynomial P2(kt, θt):

â = argmin
ã

Tsim∑

t=tinit

(zt+1 − P2(kt, θt; ã))
2

where tinit is the first value used in the regression as we would like to ex-
clude the first tinit − 1 simulation values. In our application, we choose
Tsim = 26000 and tinit = 1000 which is required to obtain robust parameter
values in the nonlinear least-squares regressions. Note that in order to en-
sure convergence we have to use nonlinear least-squares and must not run a
linear regression on the log-linearized form. We will denote the estimate for
the first iteration by â1. Using the same series {θt}t=Tsim

t=1 as simulated in the
first step, repeat the procedure as described above using parameter vector

a2 = φâ1 + (1− φ)a0

where a high φ, 1 ≥ φ > 0 generally speeds up convergence but may for
complex models result in divergence for parameter vector a. Repeat this
procedure until a convergence criterion as for example maxa∈|ai−ai−1|(|ai −
ai−1|) < c is met.

Table 1: Parameters for the polynomial used to approximate the consumption func-
tion obtained as described in the text.

a1 a2 a3 a4 a5

0.9566 -0.9314 -1.0920 -0.0304 -0.2019
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Figure 1: A simulated sample path of the term structure of interest rates in the
stochastic production economy. On average, the SPE implies an inverted
term structure with long-term rates lying below short-term rates.

Note that good starting values can consiberably speed up the iterative al-
gorithm, therefore obtained parameter values are printed in table 1 so the
reader may use these values as a starting point when implementing this
model herself. Based on this final sample, to obtain bond prices another
polynomial is used to approximate equation (2.2.3) for any maturity. First
compute the M series of stochastic discount factors according to (2.2.4) and
regress the resulting series of mτ

t on the polynomial Bn(kt, θt, ct). In particu-
lar, we follow den Haan (1995) and choose the polynomial

Bn(kt, θt, ct) = exp(b1 + b2 ln kt + b3lnθt + b4 ln c
−γ
t +

b5 ln k
2
t + b6 ln θ

2
t + b6 ln c

−2γ
t + b8 ln θ

3
t )

(2.2.11)

taking into account the high persistency in the stochastic discount factors
such that higher-order polynomials are required to approximate their ex-
pected values. Note that equation (2.2.11) results in M nonlinear least-
square regressions that yield one polynomial to price each bond with a spe-
cific maturity. For our simulation, we use the same parameter values as in
de Lint and Stolin (2003):

β = 0.99, γ = 3, d = 0.025, ρ = 0.95, α = 0.33, σu = 0.018

which are corresponding to US quarterly data. Based on these parameters,
Nsim = 500 simulations with each consisting of Tsim = 300 observations are
simulated which can be interpreted as a simulation over a period of 75 years
on a quarterly frequency. Interest rates are backed out up to 40 periods, i.e.
up to 10 years. One simulated term structure path is illustrated in figure 2:
It can be seen that the simulated interest rate series show high persistency
which is in line with empirical facts as unit-root tests on real interest rate
series often fail to reject the hypothesis that interest rates follow a unit-root
process. It can also be seen from figure 2 that short-term rates are more

6



2. Theoretical Background: Relationship between Yields and Economic Activity

volatile than long-term rates with the volatility slowly declining with the
bond maturity. However, there are also some drawbacks to the model: First
of all, as pointed out by den Haan (1995), the model term structure will
on average be downward-sloping. According to den Haan (1995), this may
be “corrected” by introducing transaction costs that are increasing in the
bond maturity. Apart from that, our polynomial approximation guarantees
that prices are positive, however there is nothing that prevents zero-bond
prices from being larger than 1, or equivalently interest rates from becoming
negative. In table 2 several correlations of model variables are printed. The
table also includes the results from the regressions of τ -period consumption
and income growth rates on the τ -period spread:

ĉτt = aτĉ + bτĉSτ
t + ǫτĉ

and
ŷτt = aτŷ + bτŷSτ

t + ǫτŷ .

It can be seen that the correlation between the spread and consumption
growth Corr(Sτ

t , ĉ
τ
t ) as well as the correlation between the spread and out-

put growth Corr(Sτ
t , ŷ

τ
t ) are positive and increasing with maturity. Whereas

there are few simulations where the former correlation is lower than or
equal to zero, the latter correlation is positive for all simulations.

Table 2: Correlations between different model variables in the SPE based on Nsim =

500 simulations, each consisting of Tsim = 300 periods. The values are
averages over all simulations.

τ = 2 τ = 4 τ = 8 τ = 20 τ = 40

Corr(Sτ
t , ĉ

τ
t ) 0.16 0.20 0.25 0.36 0.44

Percent Corr(Sτ
t , ĉ

τ
t ) > 0 98.40 99.40 99.00 98.80 99.60

bτĉ 3.07 1.03 0.44 0.33 0.20
σ(bτĉ ) 1.99 0.64 0.26 0.16 0.08

Corr(Sτ
t , ŷ

τ
t ) 0.23 0.28 0.36 0.47 0.55

Percent Corr(Sτ
t , ŷ

τ
t ) > 0 100.00 100.00 100.00 100.00 100.00

bτŷ 7.18 2.38 0.98 0.67 0.37
σ(bτŷ) 0.07 0.08 0.10 0.13 0.13

Corr(ĉt, ŷt) 1.00 0.99 0.99 0.99 0.98
Corr(ĉt, ut) -0.03 -0.04 -0.05 -0.07 -0.10
Corr(ŷt, ut) -0.06 -0.07 -0.09 -0.12 -0.15
Corr(Sτ

t , ut) -0.33 -0.33 -0.33 -0.34 -0.34

Furthermore, the regression coefficients bτĉ and σ(bτŷ) are positive and de-
creasing in maturity τ .

7



3. Econometric Models for Recession Forecasting

3. Econometric Models for Recession Forecasting

3.1. Nonlinear (Vector-)Autoregressive Models

3.1.1. Structural Break Threshold VAR and Nested Models

Define the m × 1 vector of endogenous variables as yt ≡ (y1t, y2t, . . . , ymt)
′

and the m(p + 1) × 1 vector Yt−1 ≡ (1′,y′
t−1, . . . ,y

′
t−p)

′, then the Structural
Break Threshold VAR (SBTVAR) can be written as

yt =
[
Φ

(1)Yt−1I1,t−d1(r1) +Φ
(2)Yt−1(1− I1,t−d1(r1))

]
It(τ)+[

Φ
(3)Yt−1I2,t−d2(r2) +Φ

(4)Yt−1(1− I2,t−d2(r2))
]
(1− It(τ)) + ut

(3.1.1)

where Ii,t−di(ri), i ∈ {1, 2} is a threshold indicator function which is either 1
or 0 according to

Ii,t−di(ri) =

{
1 if zt−di ≤ ri

0 otherwise

and It(τ) is a structural break indicator function that is

It(τ) =

{
1 if t ≤ τ

0 otherwise.

Galvao (2006) uses (3.1.1) to model real GDP growth and the slope of the
yield curve. Hence, in our recession forecasting framework, we choose m =
2 and let the first element of yt denote real GDP growth and its second ele-
ment denote the slope of the yield curve. Moreover, the threshold variable z
will be observable and given by real GDP growth, i.e. there are four regimes
and the level of GDP growth rates determines the regime both before and af-

ter the structural break point in time τ . Note that Φ(j) ≡ (Φ
(j)
0 ,Φ

(j)
1 , . . . ,Φ

(j)
p ),

then the data-generating process in regime j ∈ {1, 2, 3, 4} is given by the
standard VAR:

yt = c +Φ
(j)
1 yt−1 + · · ·+Φ

(j)
p yt−p + ut

with c ≡ Φ
(j)
0 1. Furthermore, we will assume that the error terms {ut} are

i.i.d. normally distributed and their variance-covariance matrix is allowed
to be regime-dependent: ut ∼ N (0,Σ(r1, r2, τ)).

The SBTVAR nests the structural break VAR (SBVAR), the threshold VAR
(TVAR) and the usual linear VAR as special cases: Assuming that the thresh-
old variable is bounded from above, z < ∞, and setting the thresholds ri
infinitely large yields the SBVAR as

yt = Φ
(1)Yt−1It(τ) +Φ

(2)Yt−1(1− It(τ)) + ut (3.1.2)

while just allowing for a threshold but no structural break gives the TVAR:

yt = Φ
(1)Yt−1I1,t−d1(r) +Φ

(2)Yt−1(1− I1,t−d1(r)) (3.1.3)

8



3. Econometric Models for Recession Forecasting

3.1.2. Maximum Likelihood Estimation of Nonlinear VARs and
Bootstrapped Standard Errors

Galvao (2006) employs a grid search estimation approach that involves loop-
ing over a grid of structural break dates τ̃ , the thresholds in each structural

break regime r̃i and the threshold delays in each structural break regime d̃i.

For a given combination of τ̃ , r̃i and d̃i the VAR parameters Φi can be consis-
tently estimated by a simple linear regression. As the assumption of Gaus-
sian error terms gives rise to a normal likelihood function, one can focus on
maximizing this likelihood function by minimizing the (log) determinant of

the estimated error variance-covariance matrix Σ̂ ≡ V̂ar(ût). Specifically,
the following procedure is applied:

1. Grid determination: Let Hv(·) denote the empirical cumulative distribu-
tion function (c.d.f.) of variable v. The grid search bounds of the sets
[τ̃lb, τ̃ub] and [r̃i,lb, r̃i,ub] are chosen in a way such that there are at least
αtT observations in each subsample (for SBTVAR and SBVAR), αg1T
observations in each regime (for TSVAR) and at least αg2Tj observa-
tions in each regime for subsample j = 1, 2 (for SBTVAR). Formally,
we write

τ̃lb = H−1
t (αt), τ̃ub = H−1

t (1− αt) [SBTVAR, SBVAR]

r̃lb = H−1
g (αg1), r̃ub = H−1

g (1− αg1) [TVAR]

r̃1,lb = H−1
g (αg2|t ≤ τ̃), r̃1,ub = H−1

g (1− αg2|t ≤ τ̃) [SBTVAR]

r̃2,lb = H−1
g (αg2|t > τ̃ ), r̃2,ub = H−1

g (1− αg1|t > τ̃) [SBTVAR]

where H−1
t (·) and H−1

g (·) are the inverse empirical c.d.f. of the time
index variable and real GDP growth rate variable, respectively. Fur-
thermore it is assumed that di ∈ {1, . . . , 4}.

2. Regression parameter estimation: Start the grid search at τ̃lb (for SBTVAR
and SBVAR) and r̃lb (for TVAR). For the SBTVAR, use the given τ̃ from
the current structural break loop to determine the threshold bounds
r̃i,lb, r̃i,ub for both subsamples i = 1, 2. For both threshold models, add
a loop over the threshold lag variable(s) di. For this set of parameters,
determine for each point in time in which state of the world – e.g. one
of the four subsample/regime combinations in the SBTVAR – we are.
The state variable j at time t for the SBTVAR is thus defined as

jt ≡





1 if I1,t−d1(r̃1) = 1 ∧ It(τ̃) = 1

2 if I1,t−d1(r̃1) = 0 ∧ It(τ̃) = 1

3 if I2,t−d2(r̃2) = 1 ∧ It(τ̃) = 0

4 if I2,t−d2(r̃2) = 0 ∧ It(τ̃) = 0

Let Tj denote the set of time indeces including all points in time the
data was generated by state j: Tj := {t : jt = j}. Then the regression

9
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parameters are consistently estimated by

Φ̂
(j) =


∑

t∈Tj

ytY
′
t−1




∑

t∈Tj

Yt−1Y
′
t−1




−1

for all states j.

3. Choice of Maximum Likelihood estimates: Having calculated the regres-

sion parameters for the given combination τ̃ , r̃i and d̃i, back out the
residuals for the whole sample by

ût = yt − Φ̂
(jt)Yt−1

and compute the state-specific error variance-covariance matrices by

Σ̂j =
1

|Tj|
∑

t∈Tj

ûtû
′
t

where |Tj| denotes the cardinality of set Tj .
2 Repeat this step for all

parameter combinations on the grid and choose the set of parameter
estimates that maximizes the log-likelihood, or equivalently minimiz-
ing

τ̂ , r̂1, r̂2 = min
τ̃lb≤τ̃≤τ̃ub

τ̃1,lb≤r̃1≤r̃1,ub
τ̃2,lb≤r̃2≤r̃2,ub

1

2

4∑

j=1

|Tj| log(det(Σ̂j))

taking into account that the error-variance-covariance matrix is state-
dependent.

To obtain standard errors, a simple residual-based time series bootstrapping
method as for example described in Lütkepohl (2005) is applied: Collect the
initial p observation in the vector Y0 = (1′,y′

0, . . . ,y
′
−p+1)

′ and determine the
state j1 the first observation is generated by based on the estimated param-
eters and the initial observations. Then draw a random residual vector u∗

1

from {ût}t∈Tj1
and compute the first observation of the bootstrap sample as

y∗
1 = Φ̂

(j1)Y0 + u∗
1

and define Y ∗
1 ≡ (1′,y∗′

1 , . . . ,y
′
−p+2)

′. Proceed to the second generated ob-
servation and determine by which state j2 it is generated. Draw u∗

2 from
{ût}t∈Tj2

, compute

y∗
2 = Φ̂

(j2)Y ∗
1 + u∗

2

and repeat the steps above for t = 3, 4. . . . T . Note that there are also alterna-
tive bootstrapping methods as for example the stationary bootstrap by Poli-
tis and Romano (1994) which is based on drawing subsamples of random
length from the original time series yt, recombining them and conducting
estimation based on this sample. However, residual-based bootstrapping
still is a widely used method when dealing with vectorautoregressive model
and we therefore follow this approach as described above.

2The cardinality of a set S measures the number of elements contained in this set.
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3.1.3. Backing out Recession Probabilities in Nonlinear VARs

To back out recession probabilities from our VAR models, we first need to
define the event “recession”. In this paper we stick to definition of Galvao
(2006) who defines quarter t to be in a recession if there are two consecutive
periods of negative growth in the period from t to t + 4. This definition
implies that whether a quarter t is in a recession can just be identified ex-
post when growth rates for dates t+1 to t+4 are known (unless for example
t and t+1 are both negative and growth rates are observable instantly, then
quarter t is already identified as in recession at date t + 1). It follows that
the probability of recession in period t + 1 conditional on observing time t
information is the probability

P(Rt+1 = 1|Ft) = P([y1,t+1 < 0 ∧ y1,t+2 < 0] ∨
[y1,t+2 < 0 ∧ y1,t+3 < 0] ∨
. . .

[y1,t+4 < 0 ∧ y1,t+5 < 0]|Ft)

which cannot be calculated analytically in our VAR model framework but
has to be computed numerically. The method to compute recession proba-
bilities as described in the appendix of Galvao (2006) is based on drawing
from the estimated residuals and simulating K series ỹt+1, ỹt+2, . . . , ỹt+5 for
all t. As with the bootstrapping method, it is important to draw the residu-
als for the t+ s simulated value from {ût}t∈Tjt+s

.

3.2. Probit Models

In contrast to the (vector-)autoregressive models as described above, Probit
models do not model the stochastic dynamics of the growth and spread se-
ries but instead take a look at the series of recessions whose probability of
occurrence is assumed to be a function of exogenous variables as for exam-
ple the slope of the yield curve.

3.2.1. Static, Dynamic and Autoregressive Probit Models

Probit models attempt to describe the dynamics in the time series of a binary
variable Rt which is assumed to be Bernoulli distributed, i.e.

Rt|Ft−k ∼ B(Pt) (3.2.1)

where the filtration Ft−k is the information set at time t− k, and k our fore-
casting horizon. Time series probit models assume the general stucture for
the conditional probability Pt takes the form

P(Rt = 1|Ft−k) = Φ(πt) (3.2.2)

where Φ(·) is a strictly monotonically increasing function that takes values
between 0 and 1 – in our case the normal cumulative distribution function
– and πt is linear function of forecasting variables. Following Kauppi and

11
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Saikkonen (2008) and Ratcliff (2011), probit models can generally be seper-
ated into four kind of models depending on the choice on which variables
to include in πt time series that allow different degrees of time series dy-
namics. Let k denote our forecasting horizon, then the models we consider
look as follows:

1. Static: πt = c+ αSt−k (model (ak))

2. Dynamic: πt = c+ αSt−k + βRt−1 (model (bk))

3. Autoregressive: πt = c+ αSt−k + γπt−1 (model (ck))

4. Dynamic Autoregressive: πt = c+ αSt−k + βRt−1 + γπt−1 (model (dk))

The dynamic models (bk) and (dk) account for the fact that we observe
strong autocorrelation in the time series of recession dummies Rt. To in-
terprete the lagged value of πt, note that

πt = Φ−1[P(Rt = 1|Ft−1)]

and we can therefore interprete models incorporating this dynamic struc-
ture as including an autoregressive structure in the time series of condi-
tional recession probabilities. The autoregressive models ck and dk allow
yield curve spreads at time τ, τ < t−k to influence the probability of period
t being in a recession indirectly through πt−1.

3.2.2. Maximum Likelihood Estimation of Probit Models and
Asymptotic Results

Parameter estimation of Probit models can be carried out using standard
maximum likelihood estimation techniques as for example described by
Kauppi and Saikkonen (2008). Let us denote the observed time series of
recession dummies by R1:T ≡ (R1, R2, . . . , RT )

′, the series of spreads by
S(1−k):T ≡ (S1−k, . . . ,S1, . . . ,ST )

′ and the series of π byπ0:T ≡ (π0, π1, . . . , πT )
′.

The likelihood function is then given by

P(R′
1:T |S ′

(1−k):T ,π
′
0:T ) =

T∏

t=1

P(Rt|St−k, Rt−1, πt−1)

and taking logs as well as using equation (3.2.2) yields the log-likelihood as

L (θ̃) =

T∑

t=1

lt(θ̃)

=
T∑

t=1

{Rt log Φ(πt(θ̃)) + (1− Rt) log(1− Φ(πt(θ̃)))}. (3.2.3)

Note that in order to back out the whole series π0:T , we need to assume an
initial value of π0. We follow Kauppi and Saikkonen (2008) and choose π0 to
be the the unconditional mean of πt, i.e.

π0 =
c+ αS̄ + βR̄

1− γ
.
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4. Empirical Evidence from Germany and the United States

Kauppi and Saikkonen (2008) also provide asymptotic results they applied
following parameter estimation which account for possible model misspec-
ification. A possible misspecification would be to estimate a Probit model
although the underlying process follows a logit process or not including the
appropriate number of lags. Let θ∗ be a value in the parameter space that

maximizes the probability limit of the likelihood contribution T−1l(θ̃), then

the limiting distribution of
√
T (θ̂ − θ∗) is given by

N (0,A−1BA−1). (3.2.4)

If the model is correctly specified, we have θ∗ = θ, i.e. the parameter vector
maximizing the likelihood function in the limit is the true parameter vec-
tor. Matrix A can be consistently estimated for both a miss- and correctly
specified model by

Â(θ̂) =
1

T

T∑

t=1

∂2lt(θ̃)

∂θ̃∂θ̃′

∣∣∣∣
θ̃=θ̂

and an estimate for matrix B̂ is obtained as

B̂(θ̂) =
1

T

(
T∑

t=1

d̂td̂
′
t +

T−1∑

j=1

wTj

T∑

t=j+1

{d̂td̂
′
t−j + d̂t−jd̂

′
t}
)

where d̂t ≡ ∂lt(θ̃)/∂θ̃|θ̃=θ̂
and wTj = k(j/mT ). The function k(x) is a kernel

function and mT the corresponding bandwith which we choose as in Kauppi
and Saikkonen (2008) mt = ⌊4(T/100)2/9⌋. For the function k(x) a Gaussian
kernel is chosen:

k(x) =
1√
2π

e−
1

2
x2

4. Empirical Evidence from Germany and the

United States

4.1. Data

Interest rate and real GDP data used in our models for the US are taken
from the Federal Reserve Bank of St. Louis:3 The 10-Year Treasury Con-
stant Maturity Rates range from April 1, 1953, to March March 1, 2015, on
a monthly basis which makes 744 observations. The same source also sup-
plies 3-Month Treasury Bill Market Rates available from January 1, 1934, to
March 1, 2015. Based on this data we construct the series of monthly spreads
as the difference between 10-year and 3-month rates starting in April 1953.
Quarterly data on real GDP range from Quarter 1, 1947, to Quarter 4, 2014.
To make the monthly spread data fit the quarterly frequency of GDP, arith-
metic averages over the last three months are taken and the end-of-quarter
spread averages are kept for further analysis, i.e. the average interest rate

3https://research.stlouisfed.org/fred2/categories, last access on July 4, 2015, 4
pm CET.
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in for example quarter 4, 2014, is observed on January 1, 2015 and is the av-
erage of beginning-of-month spreads of October, November and December
2014. Real GDP growth rates are computed on a quarter-to-quarter basis as
the log difference between real GDP in levels. The US Department of the
Treasury also supplies Treasury yield curves on a daily basis from January
2, 1990, to July 2, 2015, for maturities of from 1 month to 30 years.4 This
data is not used in our analysis but only for illustrative purposes for certain
plots. Moreover missing values are linearly interpolated. Interest rate and
real GDP data for Germany are obtained from the German Bundesbank:5

Svensson-fitted yield curves on listed federal securities are available from
September 1972 to April 2015. The data for Germany are processed in the
same way as the data for the US.

Figure 2 shows the evolution of the term structure of interest rates for the
US and Germany based on the US Treasury Department and Bundesbank
data: Especially for the US it is clear that short-term (3 months) rates are
more volatile than long-term (30 and 10 years) rates (e.g. the standard de-
viation for 3-month rates is 2.34 whereas the standard deviation for 10-year
rates is 1.82). It can be seen that the drecrease in the spread between long-
and short-term rates preceding the 2007 recession is almost only driven by
an increase in short-term rates and not by a decrease in long-term rates.
Whereas short-term rates drop to zero during the recession as a consequence
of monetary policy, the long-term rates only decrease slightly. We also note
the strong persistency in interest rates and may wonder if interest rates ac-
tually follow a stationary process. However, even if we believe that interest
rates follow a unit-root process, i.e. are non-stationary, this poses no prob-
lem for our model estimation as we are using the spread between long- and
short-term rates, and could in this case reasonably argue that the two rates
are cointegrated.

In order to evaluate our forecasts and implement our Probit model, we
will have to define what a recession actually is. For the US, the National
Bureau of Economic Research (NBER) Business Cycle Dating Committee
officially determines the business cycle peaks and troughs, i.e. determine
the months in which a recession starts and ends.6

4http://www.treasury.gov/resource-center/data-chart-center/

interest-rates/Pages/TextView.aspx?data=yield, last access on July 4, 2015,
4 pm CET.

5http://www.bundesbank.de/Navigation/EN/Statistics/Time_series_databases/

Macro_economic_time_series/its_list_node.html?listId=www_s140_it03a, last
access on July 5, 2015, 3 pm CET.

6http://www.nber.org/cycles.html, last access on July 5, 2015, 3 pm CET.
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Figure 2: The plots show the term structure of interest rates evolution for the US
and Germany based on the US Treasury Department and Bundesbank
data. Daily US data range from Januar 2, 1990, to July 2, 2015, monthly
German data range from September 1972 to June 2015. The two lower
plots show the upper two plots in the X-Z-space.
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Table 3: Business Cycle dates for the US as determined by the NBER Business Cycle
Dating Committee. The quarter in which the business cycle reaches its
peak/trough is given in brackets.

Peak Through Duration in Months

July 1953 (II) May 1954 (II) 10
August 1957 (III) April 1958 (II) 11
April 1960 (II) February 1961 (I) 16
December 1969 (IV) November 1970 (IV) 6
November 1973 (IV) March 1975 (I) 16
January 1980 (I) July 1980 (III) 6
July 1981 (III) November 1982 (IV) 16
July 1990 (III) March 1991(I) 8
March 2001 (I) November 2001 (IV) 8
December 2007 (IV) June 2009 (II) 18

Table 3 gives the NBER recession dates from 1953 up to 2009. For our analy-
sis, the quarter in which the peak month occurs is still coded as an expansion
period, i.e. non-recession quarter whereas the quarter in which the trough
occurs is coded as a recession period. For Germany, there are no official
recession dates as for the US. However, the Economic Cycle Research In-
stitute (ECRI) offers business cycle dates for a variety of counties, among
others Germany.7 Comparing the recession dates of Germany and the US it

Table 4: Business Cycle dates for Germany as determined by the ECRI. The quarter
in which the business cycle reaches its peak/trough is given in brackets.

Peak Through Duration in Months

March 1966 (I) May 1967 (II) 14
August 1973 (III) July 1975 (III) 23
January 1980 (I) October 1982 (IV) 33
January 1991 (I) April 1994 (II) 39
January 2001 (I) August 2003 (III) 31
April 2008 (II) January 2009 (I) 9

can be seen that whereas for the US, the most recent recession following the
financial crisis is the most severe one in terms of duration, this is not true
for Germany for which the so far most serious recession was the one at the
beginning of the 90s with a duration of 39 months with compared to just
9 months of the 2007/2008 recession. A look at figure 3 makes clear how
declines in the yield spread between long- and short-term rates (mostly due
to an increase in short-term rates as mentioned above) historically precede
and coincide with recession periods for both the US and Germany.

7https://www.businesscycle.com/ecri-business-cycles/

international-business-cycle-dates-chronologies, last access on July 5,
2015, 5 pm CET.
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Figure 3: The upper plot shows the yield spread between 10 year and 3 month US
treasury bonds, the lower plot the yield spread between 10 year and 6
month German Government bonds. The shaded areas mark recession
periods as given in table 3 and 4.
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4.2. Estimation Results

Estimation results for the Probit models using the full sample US data are
printed in table 5: The spread parameter estimate for α is mostly highly
statistically significant and negative, where significance is generally lower
for the autoregressive models and not significant only for the autoregres-
sive model using the one-quarter recession lag (model c1). Thus a higher
spread is associated with lower recession probabilities. The estimate for the
recession parameter β is positive and statistically significant on the 1% level
for all models as we have expected given the strong serial correlation in the
recession time series. Finally, the parameter estimate for γ in the autore-
gressive models is positive when the lagged recession variable is excluded
(model c) and negative when included (model d) for all spread lags. That
is for model c periods of high recession probabilities are ceteris paribus fol-
lowed by periods of high recession probabilities. The negative value for γ
in model d is hard to interprete sensibly and may occur due to some interac-
tion between the lagged recession variable and lagged recession probabili-
ties. These results are consistent with the estimates reported by Kauppi and
Saikkonen (2008) whose parameter estimates correspond in sign and size to
the ones printed in this paper.

We additionally computed values for the Akaike Information Criterion
(AIC) as well as the Bayesian Information Criterion (BIC): For both the static
and autoregressive probit models, adding a lagged recession dummy vari-
able greatly decreases the values for both information criteria. Using the
AIC, the dynamic models bk are preferred to the dynamic autoregressive
models for k = 1, 2, the contrary is true for lags k = 3, 4. On the other hand,
the BIC prefers the dynamic model for any lag which becomes clear when
looking at the value of the log-likelihood function: Allowing for the lagged
recession probability hardly increases the value of the log-likelihood.

The pseudo R2 for the dynamic models is considerably higher than for
the models without dynamics. The best fit is reached for model b1 with a
value of 39%. The difference in pseudo R2 for the dynamic and the dynamic
autoregressive model is only 1 percentage point for k = 1 and zero for the
other lags. Overall we may conclude that the in-sample fit for model b1 is
best which is also supported by both information criteria.
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Table 5: Probit estimation results for the US plus information criteria. Standard errors are given
in parentheses, stars indicate statistical significance. ***: Significance at 1% level, **: Sig-
nificance at 5% level, *: Significance at 10% level.

k = 1 k = 2

ak bk ck dk ak bk ck dk
Constant: ĉ -0.68*** -1.23*** -0.04 -1.45*** -0.58*** -1.25*** -0.11 -1.65***

(0.18) (0.2) (0.28) (0.3) (0.2) (0.24) (0.28) (0.36)
Spread: α̂ -0.41*** -0.62*** -0.22 -0.65*** -0.57*** -0.51*** -0.32* -0.58***

(0.13) (0.14) (0.19) (0.14) (0.16) (0.17) (0.23) (0.16)

Recession: β̂ 2.6*** 2.93*** 2.17*** 2.75***
(0.3) (0.37) (0.33) (0.32)

Probability: γ̂ 0.76*** -0.14 0.63*** -0.26**
(0.22) (0.12) (0.24) (0.14)

Log-likelihood -75.8 -40.87 -66.84 -40.57 -69.59 -42.79 -64.82 -42.01
Pseudo R2 0.07 0.39 0.14 0.38 0.12 0.37 0.16 0.37
AIC 155.6 87.74 139.68 89.14 143.18 91.58 135.65 92.01
BIC 162.49 98.07 150.01 102.91 150.06 101.91 145.97 105.78

k = 3 k = 4

ak bk ck dk ak bk ck dk
Constant: ĉ -0.53*** -1.23*** -0.25 -1.66*** -0.54*** -1.29*** -0.44* -1.74***

(0.21) (0.24) (0.28) (0.29) (0.22) (0.23) (0.31) (0.28)
Spread: α̂ -0.66*** -0.5*** -0.47** -0.6*** -0.65*** -0.41*** -0.58** -0.51***

(0.17) (0.14) (0.25) (0.15) (0.15) (0.12) (0.28) (0.13)

Recession: β̂ 2*** 2.63*** 1.96*** 2.55***
(0.31) (0.28) (0.29) (0.26)

Probability: γ̂ 0.4* -0.31*** 0.14 -0.32***
(0.28) (0.13) (0.38) (0.12)

Log-likelihood -66.11 -43.89 -64.67 -42.45 -67.07 -46.06 -66.92 -44.31
Pseudo R2 0.15 0.36 0.16 0.36 0.14 0.34 0.14 0.34
AIC 136.21 93.77 135.34 92.91 138.14 98.12 139.83 96.62
BIC 143.1 104.1 145.67 106.68 145.02 108.44 150.16 110.39

Estimation results based on German data are printed in table B.1 of ap-
pendix B: As for the US data, the spread parameter α is highly significant for
all models and all lags, the same is true for the lagged recession parameter
β in the dynamic models. Furthermore the parameter γ of the autoregres-
sive models ck has a significant positive sign for k = 1, 2 and is insignificant
for k = 3, 4. As we have already seen above using US data, the sign of γ is
negative for models dk which raises the same questions in terms of interpre-
tation. Both AIC and BIC prefer the dynamic models bk for all lags k which
is supported by the pseudo R2 for model bk which is always higher than or
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equal to the pseudo R2 of model dk. As for the US, the best model for Ger-
many in terms of pseudo R2 – which decreases in k for model bk – is model
b1.

4.3. Forecast Evaluation and Threshold Choice

4.3.1. Forecast Evaluation Methodology: Metrics

Both the VAR models and the probit models enable us to compute recession
probabilities once having obtained parameter estimates. However, the fore-
caster may want to translate these recession probabilties to a simple yes/no
forecast based on these probabilities. To do so, one can define a threshold
for the recession probability p∗ such that

R̂t+1 =

{
1 if P(Rt+1 = 1|Ft) ≥ p∗

0 otherwise

where R̂t+1 is our one-period-ahead recession forecast variable. For our in-
sample analysis, we can choose p∗ in a way such that hits and correct rejec-
tions are maximized for a given level of misses and false alarms as defined
in table 6.

Table 6: This matrix shows all four possible Forecast/Realization combinations
(forecast recession – actual recession, forecast recession – actual expan-
sion, forecast expansion – actual recession and forecast expansion – actual
expansion).

Forecast
Realization

Sum
Recession Expansion

Recession Hits (11) False alarms (10) (11) + (10)
Expansion Misses (01) Correct rejections (00) (01) + (00)
Sum (11) + (01) (10) + (00) T

Let the number of hits for a given threshold be denoted by h, the number
of false alarms by f , the number of misses by m and the number of correct
rejections by c. To evaluate the goodness of our forecasts for different thresh-
old levels p∗, three forecast evaluation metrics for binary forecast variables
as among others applied by Ratcliff (2011) are used:

1. Equitable Threat Score (ETS): The ETS is defined as

ETS ≡ h− hr/(h+m+ f − hr)

where the number of “random hits” hr is defined as hr ≡ (h + f)(h +
m)/T . The ETS gives the same negative weight to misses and false
alarms and accounts for hits that are expected to have occured just
due to chance. Using this criterion, a higher ETS is favourable.

2. Bias: The bias is defined as

bias ≡ h + f

h+m
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and measures if our model is biased towards overforecasting (bias >
1) or towards underforecasting (bias < 1) recession. The best model
has a bias close to 1 (if bias = 1 then f = m and our model is unbiased
in a sense that the number false alarms equals the number of misses).
We will redefine the bias by substracting one, such that our optimal
model has a bias that is close to zero.

3. Hit Rate minus False Alarm: Finally, this measure is defined as

hmf ≡ h

h+m
− f

f + c

where the perfect model with f = m = 0 has an hmf of 1.

Each of the 16 probit models (model ak to dk for spread lags k = 1, . . . , 4) is
evaluated at the thresholds of p∗ = 0.1, 0.2, . . . , 0.9.

4.3.2. Out-of-Sample Forecast Evaluation Using Optimal Thresholds:
Results

The US and German sample are both split into an in-sample and an out-
sample period. The US in-sample period ends at Q1 1980, the German in-
sample period at Q4 1982. Model parameters are re-estimated every four
quarters on a rolling basis and the new parameter estimates used to com-
pute recession probabilities.

Probit Models for the US

The optimal threshold for each criterion and each probit model using US
data is printed in table 8. Note that it may be the case that several con-
secutive thresholds yield the same criterion values as the categorization for
quarters into expansion and recession periods does not change (this is obvi-
ous for very fine grids, e.g. in general it does not matter if one uses a thresh-
old of p∗ = 0.5 or p∗ = 0.51). When we do find K optimal thresholds sorted
in increasing order, p∗i , p

∗
i+1, . . . , p

∗
i+K−1, threshold p∗j , j = ⌈K/2⌉ is chosen.

The first column named k gives the spread lag used for model ak, bk, ck and
dk. The optimal thresholds over all criteria are generally below 0.5, lying
around 0.1 to 0.4 with the exception of the ETS for model d4 which is the
only model-criterion combination that yields an optimal threshold of 0.5.
The left part of the table prints the results for models a and c, i.e. our models
that do not include a lagged recession dummy whereas the right part of the
table contains results for the models b and d which do include a lagged reces-
sion dummy variable. As expected, including the lagged recession variable
improves the out-of-sample forecasting power for all models and all crite-
ria (ETS and HMF criterion values increase whereas bias decreases). This
mostly comes from an improved hit rate: Including the lagged recession
variable, the hit rate of model a1 increases from 35.71% to 64.29% whereas
the share of correct rejections increases as well from 82.76% to 96.06%. When
quarter t is in recession, the lagged-recession variable models will generally
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4. Empirical Evidence from Germany and the United States

assign a probability larger than 50% that the next quarter is in recession as
well, i.e. the model implication is to expect the next quarter still to be in a
recession whenever the previous quarter is in recession. Therefore we will
generally fail to forecast the end of a recession period. Moreover, these dy-
namic models also do not improve the model’s ability to forecast the start
of a recession.

Taking a closer look at the ETS criterion, we see that the performance of
the dynamic and the dynamic autoregressive models b and d is the same
for recession lags k = 1, 2, 3 and the performance for the dynamic autore-
gressive model is actually worse than for the simple dynamic model for
recession lag k = 4, meaning that the additional autoregressive feature does
not actually improve the forecasting performance. Whenever criterion val-
ues for the simple dynamic and the more complex dynamic autoregressive
model are equal, we are going to opt for the dynamic model considering the
values of the information criteria in table 5 that tend to favor the dynamic
compared to the dynamic autoregressive models. Thus the best model ac-
cording to the ETS is the dynamic model with one lag, b1, and a threshold
of 0.2, followed by the same model with a lag of k = 4. The hmf criterion
prefers the dynamic model with a low threshold of 0.1 and lag k = 2 (model
b2). Last but not least the bias criterion favours dynamic model b4 with a
threshold of 0.3.

Probit Models for Germany

The results using German data are printed in table B.2 of appendix B: The
share of overall correct forecasts ranges from 81% to 90% for non-dynamic
models ak and ck and from 94% to 97% for dynamic models bk and dk, i.e.
dynamic models perform strictly better than non-dynamic models in terms
of overall correct forecasts. We also observe that criterion values generally
improve when including dynamics.

Note that the evaluation results for the dynamic models bk and dk are es-
pecially for k = 3, 4 quite insensitive to changes in the threshold as the mod-
els assign either large recession probabilities close to 1 or very low probabil-
ities close to 0 to individual quarters. This is due to the fact that the effect of
the lagged recession dummy taking a value of 1 is larger for Germany than
for the US, which is in turn caused by a higher “marginal” lagged recession
effect â. For example in case of the US, during recession periods model b4
assigns probabilities between 70% and 90% whereas for Germany, recession
probabilities between 70% and 100% are assigned. Recession probability
plots for Germany are printed in figure A.3 of appendix A. Be aware that –
as mentioned above for the US – including dynamics improves the evalua-
tion metrics by exploiting the high serial correlation in the recession dummy
time series and generally leads to a failure when it comes to forecasting the
end of a recession as the first quarter in an expansion period will falsely be
declared as a recession period.

Therefore, despite the conclusion that dynamic models seem to outper-
form the simple static and autoregressive models so clearly, we may not yet
fully reject the latter ones depending on the aim of the forecaster: When it
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4. Empirical Evidence from Germany and the United States

comes to forecasting the beginning of a recession, the models without dy-
namics tend to show a relatively smooth increase in recession probabilities
in line with the decrease in spreads preceding recessions. To make this point
clearer, compare the German recession probability plots for models a1 and
b1 in figure A.3 of appendix A: Before the 2008 recession, recession proba-
bility constantly increases from a low level of about 2.5% in 2005 to almost
50% at the end of 2007 for model a1. However for model b1, there is an
increase of the recession probability in line with the decrease in the yield
curve spread, however this increase starts from a level of 0% in 2005 and
just goes to a level of about 12% at the end of 2007. This difference is due to
a much lower marginal effect of spread changes on the recession probability
due to differences in the regression constant: The regression constant is 0.13
for model a1 and -0.91 for model b2. Noting that the standard normal c.d.f.
has its maximum slope at 0, this difference causes the difference in marginal
effects of spread changes. This effect is also in place for the US, however
less strong as the difference in regression constants is smaller.

Table 7: This table contains the optimal thresholds for the VAR, SBVAR, TSVAR
and SBTVAR and each of the three criteria based on US data. Column CF
contains the share of overall correct forests (recession and expansion), col-
umn HR the hit rate (share of correct recession forecasts) and column CR
the share of correct rejections (predict expansion when expansion occurs).
Column CritVal contains the criterion value at the optimal threshold in %.

Criterion Treshold CF in % HR in % CR in % CritVal

VAR
ETS 0.2 77.88 57.14 80.81 15.70
Bias 0.3 87.17 25.00 95.96 46.43
hmf 0.2 77.88 57.14 80.81 37.95

SBVAR
ETS 0.3 83.63 64.29 86.36 25.14
Bias 0.4 86.73 39.29 93.43 14.29
hmf 0.2 77.43 75.00 77.78 52.78

TSVAR
ETS 0.4 88.50 25.00 97.47 17.50
Bias 0.3 81.86 35.71 88.38 17.86
hmf 0.1 62.83 100.00 57.58 57.58

SBTVAR
ETS 0.2 78.32 78.57 78.28 22.16
Bias 0.3 84.51 46.43 89.90 17.86
hmf 0.2 78.32 78.57 78.28 56.85
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4. Empirical Evidence from Germany and the United States

VAR Models for the US

Threshold choices and forecast evaluation results for the VAR, SBVAR, TSVAR
and SBTVAR are printed in table 7 for the US in in table B.3 for German
data. For the US, the simple VAR is clearly outperformed by the SBVAR, the
TSVAR and SBTVAR as all three evaluation criteria are worse for the VAR
than for the other models, indicating that including non-linear dynamics
in the form of a structural break and/or a threshold improves forecasting
performance. Using the ETS, the SBVAR is best, followed by the SBTVAR
and the TSVAR. However, taking into account the both the bias and hmf
criterion, the picture is not so clear anymore: Whereas the bias favours the
SBVAR, the hmf takes its highest value for the TSVAR, followed by the SBT-
VAR. Taking a look at the optimal threshold values, we see they range from
0.1 to 0.4 and are thus similar to the range of the Probit thresholds for the US.
It is thus optimal to choose a threshold below 0.5, no matter which model
we opt for.

VAR Models for Germany

Let us now turn to the results for Germany which are reported in table B.3
of appendix B: For any of the three criteria, the simple VAR with an optimal
threshold of 0.3 outperforms the SBVAR, TSVAR and SBTVAR and has a
share of overall correct forecasts of 87.25% which is higher than for any other
model. Just looking at the SBVAR, TSVAR and SBTVAR, on the other end,
the SBVAR performs worst for all three criteria, i.e. for each criterion there is
a model which that shows a better criterion value, even after excluding the
simple VAR: E.g. considering the ETS, model TSVAR performs best, closely
followed by the SBTVAR, which also has the lowest bias. The highest hmf
criterion value is for the TSVAR model.

Model Forecasting Performance Comparison: Probit against VARs, US
against Germany

We have so far determined which models within each model “family” –
VAR and Probit models – can be regarded as the best and worst when it
comes to forecasting applying different forecast evaluation criteria. We now
want to compare 1. how for both the US and Germany, the best Probit model
compares to the best VAR model and 2. how the best models’ forecasting
performance differs between the two countries.

First of all, for the US, we may want to compare the dynamic probit model
b1 with a threshold of 0.2 to the SBVAR with a threshold of 0.3. The probit
model appears to perform better than the SBVAR with a share of overall
correct forecasts of 92.64% for the probit against 83.63% for the SBVAR. For
the probit, both the hit rate (78.57% against 64.29%) and share of correct
rejections (94.58% against 86.36%) are better than for the SBVAR.

For Germany, we will compare the dynamic probit model b1 with a thresh-
old of 0.6 to the VAR with a threshold of 0.3. As for the US, we observe that
the probit with a share of overall correct forecasts of 96.75% performs better

24



4. Empirical Evidence from Germany and the United States

than the VAR with a share of overall correct forecasts of 87.25%: Again, we
see that for the Probit both the hit rate (89.19% against 70.27%) and the share
of correct rejections (99.15% against 92.86%) are higher than for the VAR.

Looking at the numbers above, it becomes clear that both models, VAR
and Probit, perform better for Germany than for the US. This may be due to
the fact that our sample for Germany is smaller than for the US and there are
fewer recessions in our forecasting period for Germany. Whereas including
a structural break when modelling US growth and spread dynamics im-
proves forecasting performance, this is not the case for Germany. However,
there are also similarities: The probit appears to perform better than the
VARs for both countries and dynamic probits have proven best in terms of
our forecast evaluation criteria.
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Table 8: This table contains the optimal thresholds p∗ for each of the 16 probit models (model ak to dk for spread lags k = 1, . . . , 4) and each
of the three criteria based on US data. Column CF contains the share of overall correct forecasts (recession and expansion), column
HR the hit rate (share of correct recession forecasts) and column CR the share of correct rejections (predict expansion when expansion
occurs). Column CritVal contains the criterion value at the optimal threshold in %.

a1 b1
k Criterion Threshold CF in % HR in % CR in % CritVal Threshold CF in % HR in % CR in % CritVal

1

ETS 0.3 88.31 17.86 98.03 12.65 0.2 92.64 78.57 94.58 51.43
Bias 0.2 77.06 35.71 82.76 60.71 0.4 92.21 64.29 96.06 7.14
hmf 0.1 58.01 71.43 56.16 27.59 0.1 87.88 85.71 88.18 73.89

c1 d1
ETS 0.3 84.85 39.29 91.13 17.62 0.2 92.64 78.57 94.58 51.43
Bias 0.3 84.85 39.29 91.13 3.57 0.4 93.07 71.43 96.06 0.00
hmf 0.1 68.83 92.86 65.52 58.37 0.1 88.74 85.71 89.16 74.88

a2 b2
Criterion Threshold CF in % HR in % CR in % CritVal Threshold CF in % HR in % CR in % CritVal

2

ETS 0.3 87.45 35.71 94.58 20.45 0.2 92.64 75.00 95.07 50.35
Bias 0.3 87.45 35.71 94.58 25.00 0.4 92.64 67.86 96.06 3.57
hmf 0.1 64.94 85.71 62.07 47.78 0.1 90.04 85.71 90.64 76.35

c2 d2
ETS 0.3 86.58 46.43 92.12 23.43 0.2 92.64 75.00 95.07 50.35
Bias 0.3 86.58 46.43 92.12 3.57 0.4 92.64 67.86 96.06 3.57
hmf 0.1 68.83 92.86 65.52 58.37 0.1 89.61 82.14 90.64 72.78

a3 b3
Criterion Threshold CF in % HR in % CR in % CritVal Threshold CF in % HR in % CR in % CritVal

3

ETS 0.2 81.82 67.86 83.74 23.21 0.3 92.64 71.43 95.57 49.23
Bias 0.3 87.01 39.29 93.60 14.29 0.3 92.64 71.43 95.57 3.57
hmf 0.1 69.70 92.86 66.50 59.36 0.1 88.74 78.57 90.15 68.72

c3 d3
ETS 0.3 87.45 42.86 93.60 23.62 0.3 92.64 71.43 95.57 49.23
Bias 0.3 87.45 42.86 93.60 10.71 0.3 92.64 71.43 95.57 3.57
hmf 0.1 70.56 92.86 67.49 60.34 0.1 89.61 78.57 91.13 69.70
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Table 8 continued

a4 b4
Criterion Treshold CF in % HR in % CR in % CritVal Treshold CF in % HR in % CR in % CritVal

4

ETS 0.2 82.25 67.86 84.24 23.82 0.4 93.07 71.43 96.06 50.93
Bias 0.3 85.28 32.14 92.61 14.29 0.4 93.07 71.43 96.06 0.00
hmf 0.1 68.40 89.29 65.52 54.80 0.1 89.18 78.57 90.64 69.21

c4 d4
ETS 0.2 80.95 67.86 82.76 22.06 0.5 93.07 67.86 96.55 49.76
Bias 0.3 85.71 32.14 93.10 17.86 0.4 92.21 67.86 95.57 0.00
hmf 0.1 70.13 89.29 67.49 56.77 0.1 90.04 78.57 91.63 70.20
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5. Concluding Remarks

In this paper, we have estimated differently specified Probit and VAR mod-
els and seen that simple dynamic probits, i.e. probit models include lagged
recession dummies, appear to perform best in recession forecasting. Whereas
for the US, including a structural break in the VAR (SBVAR) improves fore-
casting performance, this is not the case for Germany where as simple VAR
performs better than more complex VARs that include non-linearities. We
also included a spread-threshold in the VAR model (i.e. the SBVAR and
SBTVAR) but found that neither for Germany nor the US, there is a clear
benefit when it comes to recession forecasting. Our probit models have the
benefit that the parameter estimates are easy to interprete and quite stable
over time, i.e. robust to including new observations in the estimation, which
is not the case for the VARs. Despite that fact that dynamic probits seem to
perform so well by just looking at the numbers, there are some drawbacks
to mention: First of all, the inclusion of a lagged recession dummy leads to
a failure of the probit model to correctly forecast the end of a recession. In
our samples, the dynamic probits always incorrectly forecasted the first ex-
pansive quarter after a recession as a recession period. In fact, much of the
probit forecasting performance comes from the simple fact that when we
already are in a recession period, the following quarter is assigned a very
high recession probability as well. Many papers on this topic only refer to
the good forecasting performance measures but do not mention this prob-
lematic fact. When it comes to evaluating the predictive power of the yield
spread itself, probit models without dynamics may be more informative.

We may also note that the computation of non-linear VARs through grid-
search is computationally quite expensive and a drawback of these kind
of models compared to probit models. The researcher may not be sure if
the true optimum is actually found when an optimum on the grid is being
determined. As we have seen for Germany, a simple VAR can actually per-
form better than more complex specifications and therefore the estimation
of non-linear VARs may not be worthwhile. A clear benefit of VARs is that
no information on previous recession periods are required but only the time
series of spreads and growth rates. The VAR models are also less prone to
overfitting as might be the case with probit models that include a lagged
recession variable. Thus, from a practical perspective – e.g. monitoring of
economic activity to register possible recession signals – a simple VAR or a
probit without lagged recession variables might be the best choice.

It has been discussed in the literature whether the predictive power of
the yield curve has decreased since the 90s. The financial crisis of 2007/08
has provided a new recessive period that enabled us to re-evaluate the yield
spread. Our data shows that this most recent recession so far has been pre-
ceded by a steady increase in short-term bond yields, resulting in a decline
in the spread. Given that the probit models directly map the yield spread
to a value (probability) between 0 and 1, this translates into a steadily in-
creasing recession probability before the outbreak of the actual recession.
However, it is also true that the declines in interest rate spreads preceding
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recessions has been less strong for the 2001 and 2007 recessions than in pre-
vious decades (although spreads still became negative for the US).

Last but not least, a convincing theoretical explanation for the yield curve’s
predictive power is still missing. It has been discussed if US monetary pol-
icy has actually been the cause of the 2007 financial crisis due to its low
interest rate policy. An increase in short-term rates by the FED may then
have triggered subprime borrowers to default due to contracts that speci-
fied variable interest payments depending on short-term rates (as e.g. the
LIBOR). If this was true, then the observed predictive power of the yield
curve would just be an artifact caused by an underlying variable, namely
monetary policy.
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Figure A.1: Recession probability plots for probit models ak–dk for k = 1, 2, 3, 4

using US data.
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Figure A.1 continued
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Figure A.3: Recession probability plots for probit models ak–dk for k = 1, 2, 3, 4

using German data.
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Figure A.3 continued
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Figure A.5: Recession probability plots for VAR models. The upper four plots show
the results for the US, the lower four plots the results for Germany.
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B. Supplementary Tables

Table B.1: Probit estimation results for Germany plus information criteria. Standard errors are
given in parentheses, stars indicate statistical significance. ***: Significance at 1% level,
**: Significance at 5% level, *: Significance at 10% level.

k=1 k=2

a1 b1 c1 d1 a2 b2 c2 d2
Constant: ĉ 0.13 -0.91*** 0.17 -0.94* 0.26 -0.90*** 0.19 -1.22***

(0.22) (0.32) (0.23) (0.65) (0.22) (0.34) (0.23) (0.43)
Spread: α̂ -0.84*** -1.16*** -0.36** -1.19*** -1.01*** -0.91*** -0.50** -1.2***

(0.16) (0.36) (0.19) (0.33) (0.19) (0.26) (0.25) (0.35)

Recession: β̂ 3.45*** 3.57*** 2.68*** 3.61***
(0.76) (1.14) (0.48) (0.91)

Probability: γ̂ 0.72*** -0.03 0.57*** -0.31*
(0.16) (0.35) (0.19) (0.22)

Log-likelihood -53.4 -18.76 -42.06 -18.75 -45.92 -20.71 -42.35 -20.09
Pseudo R2 0.38 0.78 0.5 0.77 0.47 0.76 0.50 0.75
AIC 110.80 43.53 90.13 45.51 95.84 47.41 90.70 48.19
BIC 116.88 52.64 99.24 57.66 101.91 56.52 99.81 60.34

k=3 k=4

a3 b3 c3 d3 a4 b4 c4 d4
Constant: ĉ 0.28 -0.97*** 0.24 -1.18*** 0.23 -1.15*** 0.29 -1.38***

(0.23) (0.35) (0.24) (0.31) (0.23) (0.32) (0.25) (0.30)
Spread: α̂ -1.05*** -0.66*** -0.82** -0.83*** -0.97*** -0.46*** -1.25*** -0.67***

(0.18) (0.17) (0.36) (0.21) (0.14) (0.14) (0.41) (0.17)

Recession: β̂ 2.36*** 2.91*** 2.42*** 3.00***
(0.43) (0.40) (0.38) (0.44)

Probability: γ̂ 0.22 -0.23** -0.27 -0.29**
(0.26) (0.13) (0.33) (0.17)

Log-likelihood -44.52 -24.44 -44.24 -23.88 -47.48 -27.04 -47.04 -26.04
Pseudo R2 0.48 0.71 0.48 0.71 0.45 0.68 0.44 0.68
AIC 93.04 54.87 94.48 55.77 98.97 60.08 100.08 60.09
BIC 99.12 63.99 103.6 67.92 105.04 69.20 109.19 72.24
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Table B.2: This table contains the optimal thresholds p∗ for each of the 16 probit models (model ak to dk for spread lags k = 1, . . . , 4) and each of
the three criteria based on German data. Column CF contains the share of overall correct forecasts (recession and expansion), column
HR the hit rate (share of correct recession forecasts) and column CR the share of correct rejections (predict expansion when expansion
occurs). Column CritVal contains the criterion value at the optimal threshold in %.

a1 b1
k Criterion Treshold CF in % HR in % CR in % CritVal Treshold CF in % HR in % CR in % CritVal

1

ETS 0.5 86.36 59.46 94.87 42.11 0.60 96.75 89.19 99.15 83.24
Bias 0.4 81.82 67.57 86.32 10.81 0.40 94.16 89.19 95.73 2.70
hmf 0.3 81.17 75.68 82.91 58.58 0.20 94.16 94.59 94.02 88.61

c1 d1
ETS 0.6 89.61 59.46 99.15 50.73 0.60 96.75 89.19 99.15 83.24
Bias 0.4 83.77 67.57 88.89 2.70 0.40 94.16 89.19 95.73 2.70
hmf 0.3 85.71 81.08 87.18 68.26 0.20 94.16 94.59 94.02 88.61

a2 b2
Criterion Treshold CF in % HR in % CR in % CritVal Treshold CF in % HR in % CR in % CritVal

2

ETS 0.7 88.31 54.05 99.15 45.38 0.50 95.45 89.19 97.44 77.67
Bias 0.5 86.36 67.57 92.31 8.11 0.40 94.81 89.19 96.58 0.00
hmf 0.3 83.77 81.08 84.62 65.70 0.30 94.81 91.89 95.73 87.62

c2 d2
ETS 0.3 87.01 83.78 88.03 50.23 0.40 95.45 91.89 96.58 78.04
Bias 0.5 85.06 67.57 90.60 2.70 0.40 95.45 91.89 96.58 2.70
hmf 0.3 87.01 83.78 88.03 71.82 0.40 95.45 91.89 96.58 88.47

a3 b3
Criterion Treshold CF in % HR in % CR in % CritVal Treshold CF in % HR in % CR in % CritVal

3

ETS 0.4 86.36 78.38 88.89 47.38 0.40 94.81 89.19 96.58 75.09
Bias 0.5 85.71 67.57 91.45 5.41 0.40 94.81 89.19 96.58 0.00
hmf 0.3 85.06 83.78 85.47 69.25 0.40 94.81 89.19 96.58 85.77

c3 d3
ETS 0.4 87.01 78.38 89.74 48.91 0.40 94.81 89.19 96.58 75.09
Bias 0.5 86.36 70.27 91.45 2.70 0.40 94.81 89.19 96.58 0.00
hmf 0.2 83.12 86.49 82.05 68.54 0.40 94.81 89.19 96.58 85.77
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Table B.2 continued

a4 b4
Criterion Treshold CF in % HR in % CR in % CritVal Treshold CF in % HR in % CR in % CritVal

4

ETS 0.4 85.06 75.68 88.03 43.78 0.40 94.81 89.19 96.58 75.09
Bias 0.4 85.06 75.68 88.03 13.51 0.40 94.81 89.19 96.58 0.00
hmf 0.2 81.82 86.49 80.34 66.83 0.40 94.81 89.19 96.58 85.77

c4 d4
ETS 0.3 85.06 81.08 86.32 45.17 0.40 94.81 89.19 96.58 75.09
Bias 0.5 83.12 59.46 90.60 10.81 0.40 94.81 89.19 96.58 0.00
hmf 0.3 85.06 81.08 86.32 67.41 0.40 94.81 89.19 96.58 85.77
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Table B.3: This table contains the optimal thresholds for the VAR, SBVAR, TSVAR
and SBTVAR and each of the three criteria based on German data. Col-
umn CF contains the share of overall correct forests (recession and ex-
pansion), column HR the hit rate (share of correct recession forecasts)
and column CR the share of correct rejections (predict expansion when
expansion occurs). Column CritVal contains the criterion value at the
optimal threshold in %.

Criterion Treshold CF in % HR in % CR in % CritVal

VAR
ETS 0.3 87.25 70.27 92.86 48.03
Bias 0.3 87.25 70.27 92.86 8.11
hmf 0.3 87.25 70.27 92.86 63.13

SBVAR
ETS 0.4 79.2 43.2 91.1 23.5
Bias 0.4 79.2 43.2 91.1 29.7
hmf 0.3 66.4 78.4 62.5 40.9

TSVAR
ETS 0.5 76.51 75.68 76.79 29.42
Bias 0.6 80.54 40.54 93.75 40.54
hmf 0.5 76.51 75.68 76.79 52.46

SBTVAR
ETS 0.3 77.85 67.57 81.25 29.15
Bias 0.4 78.52 45.95 89.29 21.62
hmf 0.3 77.85 67.57 81.25 48.82
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C. Derivations

C.1. Expectation Hypothesis: Upward-sloping Curve

Implies increasing Short Rates

The arithmetic mean of sample {x1, x2, . . . , xN} is given as

x̄ =
1

N

N∑

i=1

xi.

Assume that x̄ > xk, then

xk

N
+

1

N

∑

i 6=k

xi > xk

which can equivalently be stated as

xk <
1

N − 1

∑

i 6=k

xi.
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