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1. Introduction

Abstract

In this paper, we estimate three models to forecast multivariate real-
ized volatility: A VARFIMA(1, δ, 1) model, a Heterogeneous Autore-
gressive (HAR) model and a Generalized Orthogonal GARCH (GO-
GARCH) model. The models are used to forecast the realized volatility-
covariation matrix of two stocks, General Electric (GE) and Interna-
tional Business Machines (IBM), in an out-of-sample period for a daily,
weekly and biweekly forecasting horizon. Our results suggest that the
VARFIMA and HAR models using high-frequency intradaily data out-
perform the GO-GARCH model based on daily returns over all fore-
casting horizons. The HAR appears to perform slightly better than the
VARFIMA at the weekly and biweekly forecasting horizon, however the
performance difference between the two models turns out to be low.

1. Introduction

The risk of any investment is fully characterized by the return distribution
of this investment and if investment returns are normally distributed, the
distribution is given when its first two moments, i.e. expected value and
variance, are given. Although stock return distributions appear to be fat-
tailed and leptokurtic, thus contradicting the idea of normally distributed
returns, economic theories as the modern portfolio theory require stock re-
turns to be normally distributed for investors to choose portfolio weights
solely based on the vector of (conditional) expected returns and the (condi-
tional) return variance-covariance matrix.1 Moreover, in option pricing the
popular Black-Scholes formula requires the return volatility of the underly-
ing as an input parameter. Even if we reject the working hypothesis of nor-
mally distributed returns, return volatility remains an important measure to
assess the risk of an investment even though it may not capture all charac-
teristics of the underlying distribution – and it can be attempted to forecast
these return volatilities by means of stochastic volatility models. The aim
of this paper is to assess the goodness of stochastic volatility models in out-
of-sample forecasting of multivariate realized stock return volatility over a
daily, weekly (five days) and biweekly (ten days) forecasting horizon. To do
so, three stochastic volatility models are estimated and their forecasting per-
formance is compared: A VARFIMA model, a Heterogeneous Autoregres-
sive (HAR) model and a Generalized Orthogonal GARCH (GO-GARCH)
model. Whereas the former make use of intradaily high-frequency stock
price data, the latter one exclusively relies on daily stock returns. Simi-
lar analyses have been conducted by Andersen, Bollerslev, Diebold, and
Labys (2003) and Chiriac and Voev (2011): The former fit among others a
bivariate VAR on series of fractionally differenced realized exchange rate
volatilities and find that their so-called VAR-RV outperforms multivariate
GARCH (MGARCH) models in out-of-sample forecasting on the daily and

1As an alternative to the assumption of normally distributed returns, a quadratic utility
function can be assumed for investors to choose portfolio weights accordingly.
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2. Theoretical Framework

biweekly forecasting horizon. Chiriac and Voev (2011) forecast multivari-
ate realized stock return volatility using a VARFIMA, a HAR as well as
multivariate GARCH models and are able to confirm the finding for the
daily, weekly and biweekly forecasting horizon that the high-frequency data
based VARFIMA and HAR models outperform MGARCH models.

The fractional difference parameters in the VARFIMA model can either be
estimated in a two-step procedure where the fractional difference parame-
ters are estimated in a first step and a VARMA is then fitted to the fraction-
ally differenced data in a second step to determine the VAR and VMA pa-
rameters, or all parameters can be estimated simultaneously. Chiriac and
Voev (2011) apply an approximate maximum likelihood method as sug-
gested by Beran (1995) to determine all model parameters simultaneously
whereas Andersen, Bollerslev, Diebold, and Labys (2003) use a two-step
procedure based on a first-step log-periodogram regression as discussed by
Robinson (1995). Although the two-step procedure has the drawback of
resulting in inefficient parameter estimates for the VAR and VMA parame-
ters, the procedure remains feasible even for high dimensions and has the
advantage of being straightforward to implement.

This paper proceeds as follows: Section 2 introduces basic notation and
definitions concerning returns and realized volatility before turning to the
setup of the models. The theoretical framework for each model does not
only comprise the model setup but also the estimation methods which are
applied in section 3. The VARFIMA model is introduced in section 2.2, the
HAR model in section 2.3 and the GO-GARCH model in section 2.4. Section
3 starts with describing the data used for our analysis and then turns to the
parameter estimation results obtained by applying the procedures given in
the theoretical section. The results of the out-of-sample forecasting using
these parameter estimates are evaluated in section 3.3. Finally, we summa-
rize and assess our results in section 4.

2. Theoretical Framework

2.1. Preliminaries

Throughout this paper, matrices will be denoted by bold uppercase letters,
vectors by bold lowercase letters and scalars as well as sets by upper- or
lowercase letters. Assume that each trading day t, t = 1, 2, . . . , T we observe
m prices for each stock. Then the ith intraday return for stock n at day t is
computed as rtn,i = ln(ptn,i) − ln(ptn,i−1), i = 1, 2, . . . , m − 1.2 Given that
we attempt to model and predict the variance-covariance matrix of a given
number of stocks, we need to make sure that our predictions yield positive-
definite matrices. Let N denote the number of stocks we consider and rt,i
the N × 1 vector of returns at observation i of day t, t = 1, 2, . . . , T , then
the realized volatility-covariation matrix of dimension N × N for day t is

2Note that this definition of intradaily returns implies that overnight returns are not
considered in this context.
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2. Theoretical Framework

defined as

Ht ≡
m−1
∑

i=1

rt,ir
′

t,i (2.1.1)

where m − 1 is the number of intradaily returns observed within each day.
Forecasting the process realized volatility-covariation matrix, we need to
ensure that our forecast yields a positive-definite matrix. To achieve this
goal, this paper adopts the approach of Chiriac and Voev (2011) who model
the Cholesky factors of matrix Ht instead of its elements directly: Factorize
Ht as Ht = X ′

tXt and collect the K = N(N + 1)/2 Cholesky factors in a
vector xt, i.e. xt = vech(Xt). Decomposing Ht for each t, t = 1, 2, . . . , T
yields a realization of the vector stochastic process xt. As Chiriac and Voev
(2011) note, the elements of the realized volatility-covariation matrix can be
reconstructed from the Cholesky factors xt,1, . . . , xt,K by

ht,ij =

i(i+1)
2
∑

k=1+
i(i−1)

2

xt,kxt,k+ j(j−1)
2

−
i(i−1)

2
(2.1.2)

where ht,ij is the i, j-element of Ht, that is it denotes the realized covariation
between variable i and j. This “reverse Cholesky” ensures that the matrix
constructed from the xt,k is positive definite.

2.2. VARFIMA(p, d, q) Model

The general VARFIMA(p, d, q) takes the form

Φ(L)D(L) [xt −Bzt] = Θ(L)ǫt (2.2.1)

where xt is a K × 1 vector of Cholesky factors, zt an M × 1 vector of exoge-
nous variables, B a K ×M coefficient matrix, Φ(L) ≡ IK − Φ1L − Φ2L

2 −
· · · − ΦpL

p, Θ(L) ≡ IK + Θ1L + Θ2L
2 + · · · + ΘqL

q matrix lag polynomi-
als of dimension K × K and D(L) ≡ diag{(1 − L)d1 , . . . , (1 − L)dK} with
dk ≡ δk+mk, k ∈ {1, . . . , K}, δk ∈ (−1

2
, 1
2
) and mk ∈ Z+. The parameter mk is

a non-negative integer giving the number variable k has to be differenced to
achieve sationarity whereas the parameter δk gives the degree of fractional
integration of variable k. The innovations ǫt are assumed to be i.i.d. white
noise, in particular ǫt ∼ N (0,Σ). The multivariate VARFIMA(p, d, q) from
equation (2.2.1) is discussed by Sowell (1989) and is stationary for dk < 0.5
for k = 1, 2, . . . , K.

In addition the lag polynomials are assumed to be diagonal matrices with
identical entries along the main diagonal, i.e.

Φ(L) = φ(L)IK ,

Θ(L) = θ(L)IK

where φ(L) and θ(L) are both invertible because we want to model the vec-
tor stochastic process of Cholesky factors xt as a stationary long-memory
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2. Theoretical Framework

process. For the same reason the degree of integration mk is assumed to
be zero for each variable. Whereas the restriction on the autoregressive lag
polynomial is necessary for identification of model (2.2.1) as pointed out
by Lütkepohl (2005), the restriction on the moving average lag polynomial
is arbitrary to avoid overparameterization of the model. Contrary to the
model estimated by Chiriac and Voev (2011), we allow the fractional differ-
ence parameters to vary between variables. Exogenous variables zt are not
included in this analysis but only a vector of constants c – which equals the
expected value µ of xt in case of stationarity – such that the model we are
going to estimate can be written as

φ(L)D(L) [xt − µ] = θ(L)ǫt. (2.2.2)

Note that

(1− L)δk =

∞
∑

j=0

bj(δk)L
j (2.2.3)

and

bj(δk) = (−1)j
Γ(δk + 1)

Γ(j + 1)Γ(δk − j + 1)

=

j
∏

i=1

i− 1− δk
i

(2.2.4)

with b0(δk) ≡ 1 and where the second line of (2.2.4) is required for the practi-
cal computation of bj(δk) for large j. For notational convenience, assume for
a moment that the fractional difference parameters δk are constant over all
variables, then the VAR(∞) representation of equation (2.2.2) for p = q = 1
– which exists under the assumptions made above – takes the form

xt − µ = ǫt − ρ1(xt−1 − µ)− ρ2(xt−2 − µ)− . . . (2.2.5)

with ρj ≡
∑j

l=0 bl(δ)αj−l, αj ≡ (−1)j(φθj−1 + θj) for j ≥ 1 and α0 ≡ 1. A
derivation of (2.2.5) is given in appendix C.1. In case of varying δk, simply
calculate the ρj for each variable seperately with their corresponding frac-
tional difference parameters.

Estimation

Following Andersen, Bollerslev, Diebold, and Labys (2003), the fractional
difference parameters are estimated in a first step by a log-periodogram re-
gression as introduced for the univariate case by Geweke and Porter-Hudak
(1983) and generalized to the multivariate case by Robinson (1995) who also
provides asymptotic results for the regression estimates. The performed re-
gression takes the form

y = ∆λ+ u (2.2.6)

with

y ≡







y1
...
yK






,∆ ≡







c1 δ1
...

...
cK δK






,λ ≡

[

1
−2 log λ

]

,u ≡







u1
...

uK






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2. Theoretical Framework

where λl = (l2π)/T is computed for l = 1, 2, . . . , T − 1 and hence represents
frequencies between 0 and 2π associated with cycles of T/l. Variable yk is
just the log of the periodogram of variable xk, Ik, thus yk = log(Ik) with

Ik(λ) =
1

2πT

∣

∣

∣

∣

∣

T
∑

t=1

xkte
itλ

∣

∣

∣

∣

∣

2

.

The system of equations (2.2.6) can then be easily estimated by (system)
OLS.

In this paper, a VARFIMA(1, δ, 1) is estimated. Thus, in a second step each
time series of Cholesky factors is fractionally differenced using the parame-
ters obtained in the log-periodogram regression and a VARMA(1, 1) is fitted
to the fractionally differenced data. The estimated VARMA(1, 1) parame-

ter vector θ̂ = (µ̂, φ̂, θ̂)′ is determined by numerically minimizing the log
determinant of the estimated innovation variance-covariance matrix:

θ̂ = argmin
θ∗

log

{
∣

∣

∣

∣

∣

1

T

T
∑

t=1

ǫt(θ
∗)ǫt(θ

∗)′

∣

∣

∣

∣

∣

}

. (2.2.7)

Here the ǫt(θ
∗) are the estimated innovation terms that can be recursively

calculated from the set of observations of the fractionally differenced series
applying parameter vector θ∗ = (µ∗, φ∗, θ∗)′. This procedure is equivalent
to maximizing the conditional log-likelihood function (Lütkepohl, 2005, p.
469).

2.3. Heterogeneous Autoregressive (HAR) Model

The heterogeneous autoregressive (HAR) model is described by a linear re-
lationship between the dependent variable and its moving time averages:

xt+1 = c(d) + β(d)x
(d)
t + β(w)x

(w)
t + β(bw)x

(bw)
t + β(m)x

(m)
t + ωt+1,d (2.3.1)

where c(d) is a K × 1 vector of constants, the β(·) are scalar parameters and

ωt+1,d a K × 1 vector of error terms. The independent variables x
(·)
t are

averages of the m most recent observations of the vector of Cholesky factors
xt, with m(d) = 1 (daily), m(w) = 5 (weekly), m(bw) = 10 (biweekly) and
m(m) = 20 (monthly), i.e.

x
(·)
t ≡

1

m(·)
(xt + xt−1 + · · ·+ xt−m(·)+1).

The univariate version of (2.3.1) was introduced by Corsi (2009) who mod-
els the realized volatility of a stock directly whereas Chiriac and Voev (2011)
estimate the multivariate generalization and fit the model to Cholesky fac-
tors instead of realized covariations as well. The HAR-RV can be derived
under the assumption of heterogeneous market participants with different
investment horizons. Corsi (2009) divides investors into three groups: In-
vestors with a short investment horizon, that is daytraders, investors with

5



2. Theoretical Framework

an intermediate investment horizon who balance their portfolios weekly
and long-term investors adjusting their portfolios monthly. Short-term in-
vestors’ trading decisions are influenced by mid- and long-term volatility,
thus long- and mid-term volatility influence short-term volatility caused by
short-horizon traders. On the other hand, mid-term investors care about
long-term volatility, but not about short-term price movements. Last but not
least, long-horizon investors care neither about short- nor mid-term volatil-
ity but only about long-term price movements. This results in a hierarchical
structure of volatility where a cascade from low- to high-frequency volatil-
ity can be observed in the market. As we are interested in daily, weekly
and biweekly forecasting, the biweekly average is included addition to the
monthly one in (2.3.1). The parameters of our model (2.3.1) are readily esti-
mated by (system) OLS.

2.4. Generalized Orthogonal GARCH Model

MGARCH models just make use of daily returns and no intradaily data.
Thus, define the return of stock n from day t − 1 to day t as rtn ≡ ln(pt,n)−
ln(pt−1,n) where ptn is the closing price of stock n observed at trading day t.
Stacking the daily returns for each stock n, n = 1, 2, . . . , N in a vector yields
the N×1 daily return vector rt. The MGARCH model assumes conditionally
normally distributed returns:

rt|Ft−1 ∼ N (0,Σt) (2.4.1)

where Ft−1 denotes the information set at day t − 1 and Σt the conditional
variance-covariance matrix at day t. Let the return vector rt be stationary
and hence the unconditional variance-covariance matrix is given by Σ ≡
E(Σt).

Orthogonal GARCH

The orthogonal GARCH model (O-GARCH) as discussed by Alexander (2001)
is based on a principal components analysis of the time series of returns: Re-
call that any N ×N matrix Σt with distinct eigenvalues can be decomposed
as Σt = WtΛtWt where Λt denotes the N ×N diagonal matrix of eigenval-
ues of Σt and Wt the N×N matrix of eigenvectors of Σt where each column
represents an eigenvector (Hamilton, 1994, p. 730). It can be shown that
symmetric matrices with distinct eigenvalues have orthogonal eigenvectors
and thus matrix Wt is orthogonal, i.e. W ′

t = W−1
t . Assume Wt = W for

t = 1, 2, . . . , T and define the N × 1 vector of principal components or factors
as pt ≡ Wrt, then the return vector can be rewritten as

rt = W ′pt. (2.4.2)

It can be shown that the unconditional factor variance-covariance matrix is
given by Var(pt) = Λ, which implies that the factors are unconditionally un-
correlated as the matrix of eigenvalues of Σ, Λ, is diagonal. The O-GARCH

6



2. Theoretical Framework

makes the assumption that factors at time t are also uncorrelated condition-
ing on the information set Ft−1, so Ωt ≡ Var(pt|Ft−1) is diagonal as well. It
follows that the conditional return variance-covariance matrix is given by

Σt = WΩtW
′. (2.4.3)

The O-GARCH now models the diagonal elements of Ωt by means of sim-
ple univariate GARCH models. In practice, W is estimated by using the

eigenvectors of the estimated unconditional variance-covariance matrix Σ̂

and the time series of principal components is computed. Finally, simple
univariate GARCH models are fitted to the principal components, resulting
in estimates of Ωt and thus Σt which is necessarily positive definite by con-
struction as can be seen from (2.4.3). To sum up, the O-GARCH enables us
to model K = N(N +1)/2 variances and covariances of the original process
by just fitting univariate GARCH models on N < K ∀ N > 1 uncorrelated
factors as our data is considered to be a linear combination of these factors
which remains feasible even for high dimensions N . However, as van der
Weide (2002) points out, the orthogonal matrix W is not identified by the
eigenvectors of Σ anymore if the eigenvalues of Σ are not distinct which
may be the case in systems of only weakly correlated variables.

Generalized Orthogonal GARCH

The generalized orthogonal GARCH (GO-GARCH) as introduced by van der
Weide (2002) assumes that the N × 1 observed return process rt can be
expressed as a linear combination of N uncorrelated and unobserved eco-
nomic factors ft:

rt = Zft (2.4.4)

where the factors ft are normalized to have an unconditional unit variance-
covariance matrix, Var(ft) = IN , and the N × N matrix Z is non-singular.
Assuming conditionally normally distributed and uncorrelated factors –
ft|Ft−1 ∼ N (0,Ωt) – gives rise to a Gaussian likelihood function. As in
the O-GARCH, the factors follow simple univariate GARCH processes, i.e.
Ωt = diag{ω1,t, . . . , ωN,t} with

ωn,t = (1− αn − βn) + αnf
2
n,t−1 + βnωn,t−1 (2.4.5)

where fn,t−1 denotes the nth element of ft−1 for n = 1, . . . , N . The crucial dif-
ference to the standard O-GARCH model is that the linkage Z between the
factors and the returns process need not be orthogonal. As van der Weide
(2002) shows, the map Z can be decomposed as

Z = WΛ
1
2U0 (2.4.6)

where U0 is an orthogonal matrix with det(U0) = 1. Again, W and Λ are
readily estimated by computing the eigenvalues and eigenvectors of the es-

timated unconditional variance-covariance matrix Σ̂. For the estimation of
U0, van der Weide (2002) uses the fact that U0 can be written as the product
of rotation matrices that can be estimated applying maximum likelihood.3

3The estimation results for the GO-GARCH printed in this paper are computed using
the rmgarch R-package by Ghalanos (2014).
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The log likelihood takes the form

L = −
1

2

T
∑

t=1

(

N log(2π) + log |ZθZ
′

θ|+ log |Ωt|+ f ′

tΩ
−1
t ft

)

(2.4.7)

where

Zθ ≡

[

1 0
cos θ sin θ

]

defines the Euler angles required for the calculation of Z as the product of
rotation matrices. Like in the conventional O-GARCH, GO-GARCH variance-
covariance matrix forecasts are always positive definite.

3. Estimation, Forecasting & Evaluation

3.1. Data

Our dataset consists of intradaily transaction prices for stocks of General
Electric (GE) and International Business Machines (IBM) on a one-minute fre-
quency from 9:30 a.m. to 4:00 p.m. covering a period from January 3rd 2011
until June 29th 2012 which makes 377 trading days with 391 price obser-
vations per trading day. An equally spaced grid of 1-minute-intervals is
achieved by a simple previous-tick interpolation. For each trading day, real-
ized volatility-covariation matrices are calculated on a five-minute-interval
basis to account for market microstructure noise that biases our estimator.
Intradaily returns are computed as the difference in log prices based on five-
minute-intervals. In order to use all observations and get a more efficient as
well as a robust estimator, the realized volatility-covariation matrix is com-
puted as the the sum of squared intradaily returns and cross-product re-
turns for the five-minute-interval starting at minute m = 1, 2, 3, 4 so that we
obtain four realized covariation matrices for each day. The realized covaria-
tion matrix Ht is then defined to be the average of those four matrices. For
each of the 377 trading days, the realized covariation matrix is decomposed
into its Cholesky factors so that we obtain three time series of Cholesky fac-
tors which are used to fit the VARFIMA and HAR models. The dataset for
the GO-GARCH model is obtained by keeping only closing prices of each
day and calculating the time series of daily returns.

As we are interested in out-of-sample forecasting, the sample is split into
an in-sample period of 252 observations ranging from January 3rd 2011 to
December 30th 2011 and an out-of-sample period of 125 observations from
January 3rd to June 29th 2012. The evolution of realized volatility and co-
variation for the two stocks over the whole period is plotted in figure 1,
the beginning of the out-of-sample period is marked by the dashed vertical
line. As can be seen in table B.3 in the appendix, realized volatility and co-
variation for the two stocks are right-skewed and leptokurtic, i.e. the right
tail of the distribution is relatively long. Note that the out-of-sample pe-
riod appears to be a period with relatively low levels of both volatility and
covariation, so our out-of-sample forecasting evaluation will not be able to

8



3. Estimation, Forecasting & Evaluation

check how the models perform in times of high volatility as for example ob-
served at the end of the in-sample period. Further descriptive statistics on
daily and intradaily returns can be found in table B.2 and B.1 of appendix
B.
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Figure 1: The evolution of realized volatility and covariation from January 3rd 2011
to June 29th 2012 consisting of 377 observations for each stock. The
dashed vertical line marks the beginning of the out-of-sample period
which covers the latest 125 observations.

3.2. Estimation Results

The parameter estimates for our three models are printed in table 1 for both
only the in-sample period as well as the full set of observations, standard
errors are given in brackets. Estimation for the VARFIMA(1, δ, 1) is carried
out using the two-step procedure as described in section 2.2. Our estimates
for the fractional difference parameters δk lie between 0.36 and 0.47 which
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3. Estimation, Forecasting & Evaluation

is consistent with the results reported by Chiriac and Voev (2011) or An-
dersen, Bollerslev, Diebold, and Labys (2003) which are 0.449 for the stock
return volatility series and 0.401 for the exchange rate volatility series. This
implies that our series of realized volatilities and covariations indeed ex-
hibit long-memory properties which is inherited by the series of Cholesky
factors. Whereas the levels of the fractional difference parameters decrease
slightly for each series of Cholesky factors when using the full sample com-
pared to the in-sample estimation, the autoregressive and moving average
parameters φ and θ increase in absolute value, indicating that the magni-
tude of the long-memory process is slightly over-estimated using only the
in-sample observations.4 The HAR parameter estimates appear to be ro-
bust to changes in sample size which is what we expect given that the series
of Cholesky factors exhibit long-memory stationarity and thus a regression
of the Cholesky factors on moving factor averages will yield consistent es-
timates such that we can observe convergence with an increasing sample
size. Finally, the factor variances of our GO-GARCH(1, 1) model appear to
be highly persistent given that the sum of the two univariate GARCH(1, 1),
αn and βn, are close to one for n = 1, 2. As any MGARCH model applied
to daily return series can be interpreted as fitting a VARMA model on the
squared returns (Lütkepohl, 2005, p. 565) and the GO-GARCH regards the
returns as generated by a linear combination of uncorrelated factors, highly-
persistent factor variances imply high persistence in the series of squared
daily returns as well. As Andersen and Bollerslev (1998) note, squared daily
returns are unbiased – however extremely noisy – estimators for the daily
variance, and therefore our GO-GARCH estimates indicate high persistence
in daily return variance. Our standard errors are computed using the sta-
tionary bootstrap method as proposed by Politis and Romano (1994). This
non-parametric bootstrap method is based on drawing random subsamples
of random length from our original sample and combine these subsamples
to a new bootstrap sample of length T which equals the length of our orig-
inal time series. This way we account for the two-step estimation applied
in the VARFIMA and GO-GARCH model: Although asymptotic theory for
the GO-GARCH is implicitly given as it is just a special case of a BEKK-
GARCH, the additional uncertainty concerning the first-step estimation of
the eigenvectors and eigenvalues of Σ need to be taken into account. The
same is true for the VARFIMA model where fractional difference parame-
ters have been estimated in a first step by a log-periodogram regression and
are treated as known in the VARMA(1, 1) fitting.

Note that the estimates of our log-periodogram regression are not effi-
cient, in particular the ratio of their variance and the variance of exact max-
imum likelihood estimates will converge to infinity, i.e. the rate of conver-
gence of log-periodogram estimates is lower than the rate of convergence of
exact maximum likelihood estimates.

4Note that our estimate for θ reported in table 1 is negative whereas the estimate re-
ported by Chiriac and Voev (2011) is positive which is due to the fact that they define
the VMA lag polynomial as Θ(L) = IK −Θ1L−Θ2L

2 − · · · −ΘqL
q .

10



3. Estimation, Forecasting & Evaluation

Table 1: Parameter estimates for the VARFIMA(1, δ, 1), the HAR and the GO-
GARCH(1, 1) models. Parameter estimates are printed for estimations
based on the in-sample period (the first 252 trading days) and the full sam-
ple (all 377 trading days). The GO-GARCH parameters correspond to the
univariate GARCH parameter estimates of the two factors. Standard er-
rors are given in brackets and are determined using stationary bootstrap.

Parameter Estimates

In-sample (T = 252) Full sample (T = 377)

VARFIMA(1, δ, 1)
φ 0.6911 0.8033

(0.4793) (0.4467)
θ -0.6823 -0.7737

(0.4390) (0.4100)
δ1 0.4741 0.4344

(0.0889) (0.0772)
δ2 0.4357 0.4130

(0.0783) (0.0777)
δ3 0.4152 0.3560

(0.0738) (0.0690)
HAR
c(d) 0.0006 0.0004

(0.0003) (0.0001)
β(d) 0.6861 0.6252

(0.1509) (0.1526)
β(w) 0.0052 0.0656

(0.1441) (0.1347)
β(bw) 0.1489 0.1347

(0.1939) (0.0759)
β(m) 0.1015 0.1245

(0.1206) (0.0567)
GO-GARCH
α11 0.0751 0.0806

(0.0629) (0.0616)
β11 0.9019 0.8958

(0.1160) (0.1052)
α21 0.0000 0.0000

(0.0750) (0.0514)
β21 0.9990 0.9990

(0.1231) (0.1148)
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3. Estimation, Forecasting & Evaluation

3.3. Forecasting

For forecasting the realized volatility and covariation in our out-of-sample
period, three forecasting horizons are chosen: A daily, weekly (five days)
and biweekly (ten days) forecasting period. Forecasts using the VARFIMA
model were conducted using the VAR(∞) representation as given by (2.2.5)
(with variable-specific δk due to different degrees of fractional integration)
truncated at the first observation. Let Pj ≡ diag{ρj1, . . . , ρjK} with ρjk ≡
∑j

l=0 bl(δk)αj−l and αj as defined in section 2.2. Then the one-step ahead
prediction of xt+1 at time t, denoted by x̂t+1, is given by the expected value
of xt+1 conditional on information given at time t:

x̂t+1 ≡ E(xt+1|Ft)

= µ− P1(xt − µ)−P2(xt−1 − µ)− · · · −Pt−1(x1 − µ) (3.3.1)

A feasible forecast follows after substituting µ and Pj by their estimated
values, where µ is estimated by its sample mean based on all observations
available at time t. Multi-step forecasts x̂t+s, s > 1 in the VARFIMA frame-
work are obtained by computing a one-step ahead forecast as previously
described which is then subsequently treated as an actual observation in
(3.3.1). One-step ahead forecasts in HAR are readily obtained from (2.3.1),
multi-step forecasts are computed following the same iteration logic as for
the VARFIMA model by replacing the values required to compute xt+s,

that is x
(·)
t+s−1, with their forecasted values obtained in the previous step.

Forecasts for the GO-GARCH as a special of a BEKK-GARCH model as dis-
cussed by Lütkepohl (2005) follow from the VARMA representation of the
squared- and cross-product daily returns.

In the VARFIMA and HAR model, the Cholesky factor forecasts are then
transformed back into realized volatilities and covariations using equation
(2.1.2) which simplifies in our case with N = 2 to

ĥt+s,11 = x̂2
t+s,1,

ĥt+s,12 = x̂t+s,1x̂t+s,2,

ĥt+s,22 = x̂2
t+s,2 + x̂2

t+s,3

where ĥt+s,ij denotes the i, j-element of Ĥt+s – the s-step ahead realized
volatility matrix forecast – and x̂t+s,k denotes the s-step ahead forecast of
the kth Cholesky factor. Although (3.3.1) provides unbiased forecasts for
the Cholesky factors, a problem arises from the nonlinear transformation

of the Cholesky factors back into realized volatilities: The elements of Ĥt+s

will generally be biased forecasts for the elements of Ht+s. Chiriac and Voev
(2011) deal with this problem and discuss a bias correction based on the the-
oretical size of the bias. They refuse this approach as the forecast bias de-
pends on the unknown, model-dependent size of the variance of the forecast
error. Comparing the ratio of volatility forecasts to their actual ex-post real-
izations suggests that the bias arising from the nonlinear transformation is
negligible, thus we dispense with bias correction as well.

12
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Figure 2: Daily forecasts of realized volatility and covariation for the GE and IBM
stocks using the VARFIMA and the HAR model. At each day in the above
illustrated out-of-sample period, parameters are re-estimated using all
data available at this day. Forecasts are then carried out using these pa-
rameters.

Having computed multi-step forecasts, forecasts over a period of h days
given information at day t are simply obtained by summing up the individ-
ual s-step forecasts:

Ĥt:t+h ≡
h
∑

s=1

Ĥt+s (3.3.2)

The resulting HAR and VARFIMA forecasts for the GE and IBM realized
volatility as well as their realized covariation are plotted in figure 2 for the
daily forecast horizon (h = 1) and in figure A.1 of appendix A for the weekly
(h = 5) and biweekly (h = 10) horizon.
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3. Estimation, Forecasting & Evaluation

Forecast Evaluation

We evaluate our forecasts by performing Mincer-Zarnowitz regressions, a
method for example used by Andersen, Bollerslev, Diebold, and Labys (2003)
to analyze the performance of different high- and low-frequency based mod-
els for forecasting return variances and covariances of exchange rate returns.
The regression takes the following form

hij,t:t+h = b0 + b1ĥij,t:t+h + uij,t:t+h (3.3.3)

where hij,t:t+h denotes the i, j-element of the h-day realized volatility matrix

Ht:t+h and ĥij,t:t+h its forecast, the i, j-element of Ĥt:t+h. This regression is
conducted for each forecasting horizon and each of our models for the three
covolatilities, resulting in 27 regressions overall. These regressions’ R2 are
then used to evaluate the models’ forecasting performance. The estimation
results are printed in table 2: For the daily out-of-sample forecasting pe-
riod, the VARFIMA performs best at forecasting the IBM stock’s realized
volatility and the GE-IBM realized covariation whereas the HAR is best at
forecasting the GE stock’s realized volatility. Nonetheless, the two models’
R2 for the daily horizon are quite close. The GO-GARCH is clearly the worst
and only explains a significant share of the GE realized volatility variance
where it comes with an R2 of 0.1452 close to the HAR’s performance which
exhibits an R2 of 0.1509. The picture of the weekly forecasts is similar to that
of the daily ones: The VARFIMA performs best at forecasting IBM realized
volatility and the GE-IBM realized covariation whereas HAR is best at fore-
casting GE realized volatility. Although the GO-GARCH performs better in
terms of higher R2 at the weekly horizon, it can still just explain significant
shares of the GE realized volatility. The picture changes for the biweekly
forecasting horizon: Comparing the VARFIMA and the HAR, the HAR’s R2

are higher for each realized covariation than the VARFIMA’s. Moreover, the
GO-GARCH now outperforms the other two models at the forecasting of
the GE realized volatility.

All in all, the GO-GARCH performs relatively good at forecasting the GE
stock’s realized volatility over all forecasting horizons, but can hardly ex-
plain the variance in the remaining two realized covariations. This result
is consistent with the results of Andersen, Bollerslev, Diebold, and Labys
(2003) who fit univariate GARCH models to the DM/$, U/$ and the U/DM
return series and find relatively high R2 for the U/$ andU/DM series whereas
the R2 for the DM/$ series is relatively low over all forecasting horizons.
Furthermore, we observe that the R2 are highest for the weekly forecasting
horizon implying that medium-horizon forecasts are actually more exact
than short-term (i.e. daily) forecasts.

Another way of evaluating our forecast is by means of a loss-function as
e.g. used by Chiriac and Voev (2011) who opt for the Root Mean Squared
Error (RMSE) based on the Frobenius norm of the matrix of forecast errors

Et:t+h ≡ Ht:t+h − Ĥt:t+h (3.3.4)

14



3. Estimation, Forecasting & Evaluation

and thus

RMSE ≡

√

∑

τ

(e211,τ :τ+h−1 + e222,τ :τ+h−1 + 2e212,τ :τ+h−1) (3.3.5)

where eij,τ :τ+h−1 denotes the i, j-element of Eτ :τ+h−1, τ ≡ p(h) + (p(h) −
1)(h− 1), p(h) = 1, 2, . . . , ⌊T ∗/h⌋ and T ∗ is the size of the out-of-sample pe-
riod. For example, as in our case we have T ∗ = 125, thus for a forecasting
period of h = 10 days there are ⌊T ∗/h⌋ = 12 out-of-sample periods and
hence τ = 1, 11, . . . , 111. Note that even ex-post, the true variance of h-day

returns Σt:t+h, Σt:t+h ≡ Var(
∑h

s=1 rt+s), is not known and thus the ex-post
realized volatility Ht:t+h is just a proxy for the true variance-covariance ma-
trix. However, as pointed out by Andersen and Bollerslev (1998), Σt:t+h

can in principle be approximated arbitrarily close by the realized volatil-
ity matrix Ht:t+h by increasing the intraday return frequency. Hence, it is
appropriate to evaluate the GO-GARCH using realized volatilities instead
of squared and cross-product returns as these measures are just less effi-
cient estimates of the true return volatility. The RMSE’s are given in table
3: For the daily forecasting horizon, the VARFIMA performs best whereas
for the weekly and biweekly horizon, the HAR outperforms the other mod-
els. The high forecasting errors of the GO-GARCH models can be explained
by looking at the squared returns: As mentioned above, MGARCH models
have a VARMA representation and can thus be interpreted as fitting a line
through squared and cross-product daily returns. Comparing table B.3 and
B.4 in appendix B shows that the full-sample average realized volatility for
the GE stock is 0.0163%, for the IBM stock 0.0084% and their average real-
ized covariation is 0.0062% whereas the full-sample average squared daily
returns for the GE stock is 0.0296%, for the IBM stock 0.0165% and their
average cross-product return is 0.0141%. So it appears that volatility es-
timates based on daily returns are strongly upward biased and therefore
high RMSE’s are not surprising for the GO-GARCH model. Nonetheless
the average squared returns and cross-products will asymptotically con-
verge to the true unconditional daily volatility and results may at least im-
prove for the GO-GARCH in larger samples than the one used in this paper.
Our results concerning the GO-GARCH model are consistent with the find-
ings of Chiriac and Voev (2011) that MGARCH models are outperformed
by models using high-frequency data. On the other hand, they find that
the VARFIMA is best at forecasting over the 1-, 5- and 10-day forecasting
horizon whereas in our case, the VARFIMA is best at the daily forecasting
horizon and the HAR performs best at the weekly and biweekly forecast-
ing horizon. Note, however, that the weekly (biweekly) horizon only makes
use of 25 (12) forecasts whereas Chiriac and Voev (2011) use 129 (64) fore-
casts, thus different results for the weekly and biweekly horizons may be
attributed to the differences in sample sizes.
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Table 2: Mincer-Zarnowitz regressions based on the out-of-sample predictions for the two realized volatilities (RV) and the realized covariation
(RCV) between the two stocks. For each of the three forecasting horizons, the ex-post realized volatilities and covariation were projected
on the VARFIMA-, HAR- and GO-GARCH forecasts. The estimated parameters for this linear projection as well as the resulting R2 are
printed in the table below, standard errors are given in brackets. The regression for the daily forecasting horizon makes use of N = 125
observations, i.e. each single day of the out-of-sample period, the regression for the weekly horizon uses N = 125/5 = 25 forecasts and
the regression for the biweekly horizon uses N = ⌊125/10⌋ = 12 forecasts.

Daily (N = 125) Weekly (N = 25) Biweekly (N = 12)
b0 b1 R2 b0 b1 R2 b0 b1 R2

GE-RV
VARFIMA 0.0000 0.6985 0.1475 0.0000 0.8069 0.2683 0.0008 0.1827 0.0148

(0.0000) (0.1514) (0.0002) (0.2779) (0.0006) (0.4717)
HAR 0.0001 0.5312 0.1509 0.0002 0.5839 0.2784 0.0003 0.7093 0.0155

(0.0000) (0.1136) (0.0001) (0.196) (0.0003) (0.3192)
GO-GARCH 0.0000 0.2872 0.1452 0.0003 0.2341 0.2294 0.0000 0.2872 0.1452

(0.0000) (0.06283) (0.0001) (0.08945) (0.0000) (0.0628)
IBM-RV

VARFIMA 0.0000 0.7224 0.1579 0.0001 0.7778 0.2405 0.0003 0.5562 0.1788
(0.0000) (0.1504) (0.0001) (0.2882) (0.0003) (0.3769)

HAR 0.0000 0.4650 0.1227 0.0000 0.5155 0.2007 0.0002 0.6975 0.2123
(0.0000) (0.1121) (0.0001) (0.2145) (0.0002) (0.2580)

GO-GARCH 0.0000 0.2876 0.0374 -0.0002 0.2630 0.0715 0.0004 0.2225 0.0704
(0.0000) (0.1315) (0.0001) (0.1976) (0.0004) (0.2558)

GE-IBM-RCV
VARFIMA 0.0000 0.8254 0.2205 0.0000 0.9654 0.3437 0.0001 0.5715 0.1188

(0.0000) (0.1399) (0.0001) (0.2782) (0.0002) (0.4921)
HAR 0.0000 0.5901 0.2062 0.0001 0.5761 0.2956 0.0000 0.8007 0.2511

(0.0000) (0.1044) (0.0000) (0.1854) (0.0000) (0.2587)
GO-GARCH 0.0000 0.1177 0.0459 0.0001 0.1308 0.1048 0.0003 0.0653 0.0220

(0.0000) (0.0484) (0.0000) (0.0797) (0.0001) (0.1378)
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4. Conclusion

Table 3: RMSE’s based on the Frobenius norm of the forecast errors. RMSE’s were
computed for each model for the daily, weekly and biweekly forecasting
horizon.

Daily(a) Weekly(a) Biweekly(a)

VARFIMA 0.6734185 1.057364 1.794726
HAR 0.7046182 1.002439 1.651637
GO-GARCH 1.801261 4.132416 5.850871

(a) All values are scaled by factor 100.

4. Conclusion

We have estimated a VARFIMA(1, δ, 1), an HAR as well as a GO-GARCH
model and seen that – using Mincer-Zarnowitz regressions and the RMSE
criterion for forecast evaluation – our high-frequency data based models
outperform the GO-GARCH model in out-of-sampling forecasting over a
daily, weekly and biweekly forecasting horizon. For the daily and weekly
forecasting horizon, both the HAR and VARFIMA can explain significant
shares of the variance in any of the three realized volatility/covariation
series where the forecasting performance is best at the weekly forecasting
horizon. Both the Mincer-Zarnowitz regressions as well as the RMSE crite-
rion suggest that the VARFIMA is best at forecasting at the daily horizon, for
the weekly forecasting horizon however, the VARFIMA appears to perform
best according to the Mincer-Zarnowitz regressions whereas applying the
RMSE criterion, the HAR model outperforms the VARFIMA model. Given
that the differences RMSE’s and R2 between the HAR and the VARFIMA
model are low for the daily and weekly forecasts (e.g. a maximum of 5 per-
centage points difference for the R2), it is generally not clear which of the
two models to prefer. Although the HAR outperforms the VARFIMA in
case of the biweekly forecasts, this result needs to be interpreted carefully
as there are only 12 biweekly out-of-sample forecasting periods included in
the forecast evaluation.

A possible problem not addressed in this paper is the curse of dimension-
ality when a high number of stocks is included in the analysis. The results
of Chiriac and Voev (2011) suggest that the analysis remains feasible for six
stocks, estimation and forecasting using even more stocks remains a ques-
tion for further research. Furthermore, our analysis is restricted to volatility
forecasting relying exclusively on stock price data, the general form of the
VARFIMA, however, allows to include other economic variables that may
have an effect on stock return volatility. Including such factors may improve
the forecasting performance of our VARFIMA model and remains another
problem to be addressed by future research.
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Figure A.1: Weekly and biweekly forecasts of realized volatility and covariation for
the GE and IBM stocks.
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B. Supplementary Tables

Table B.1: Descriptive statistics on intradaily returns, overnight returns are exluded from the sam-
ple.

Stock Min Max Mean SD Skewness Kurtosis

Intradaily Returns
GE -2.3080% 3.6690% -0.0001% 0.1665% 0.2647 17.8555
IBM -1.5430% 1.3410% 0.0014% 0.1207% -0.0077 11.8468

Table B.2: Descriptive statistics on daily returns for the GE and IBM stocks, based on 376 daily
return observations.

Stock Min Max Mean SD Skewness Kurtosis

Daily Returns
GE -6.7286% 6.8631% 0.0347% 1.7217% -0.1827 4.9217
IBM -5.2901% 5.3548% 0.0750% 1.2852% -0.2766 5.7277

Table B.3: Descriptive statistics on realized volatility for the GE and IBM stocks. The statistics are
based on T = 377 observations, i.e. our full sample.

Stock Min Max Mean SD Skewness Kurtosis

Realized Volatility
GE 0.0029% 0.1905% 0.0163% 0.0189% 4.8640 35.3210
IBM 0.0011% 0.1151% 0.0084% 0.0105% 5.0870 39.3690
Realized Covariation
GE/IBM -0.0013% 0.1241% 0.0062% 0.0110% 5.7020 47.5700

Table B.4: Descriptive statistics on squared and cross-product daily returns for the GE and IBM
stocks, based on 376 daily return observations.

Stock Min Max Mean SD Skewness Kurtosis

Squared Returns
GE 0.0000% 0.4710% 0.0296% 0.0585% 4.5151 27.8088
IBM 0.0000% 0.2867% 0.0165% 0.0357% 4.2879 25.3950
Cross-Product
GE/IBM -0.1340% 0.2967% 0.0141% 0.0373% 3.8370 25.8503
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C. Derivations

C. Derivations

C.1. VAR(∞) Representation of VARFIMA(1, δ, 1)

First of all, define x∗

t ≡ xt − µ, assume δk = δ ∀ k ∈ {1, 2, . . . , K}, then
write model (2.2.2) as

(1− φL)(1 + θL)−1(1− L)δx∗

t = ǫt (C.1)

and express (1− φL)(1 + θL)−1 as

(1− φL)(1 + θL)−1 = (1− φL)(1 + (−θL) + (−θL)2 + . . . )

= 1 + (−φ − θ)L + (φθ + θ2)L2 + (−φθ2 − θ3)L3 + . . .

=

∞
∑

j=0

αjL
j (C.2)

with αj ≡ (−1)j(φθj−1 + θj) for j ≥ 1 and α0 ≡ 1. Next, use the definition of
(1− L)δ to write

(1− φL)(1 + θL)−1(1− L)δ =

(

∞
∑

j=0

αjL
j

)(

∞
∑

j=0

bj(δ)L
j

)

= (1 + α1L + α2L
2 + . . . )(1 + b1(δ)L + b2(δ)L

2 + . . . )

= 1 + [b1(δ) + α1] L + [b2(δ) + b1(δ)α1 + α2] L
2+

[b3(δ) + b2(δ)α1 + b1(δ)α2 + α3] L
3 + . . .

=

∞
∑

j=0

ρjL
j (C.3)

where ρj ≡
∑j

l=0 bl(δ)αj−l. Plugging (C.3) into (C.1) yields the VAR(∞) rep-
resentation of the system.
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